首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中国参考作物腾发量时空变化特性分析   总被引:34,自引:6,他引:28  
分析参考作物腾发量的时空变化特征,有助于了解中国农业及生态需水的分布与演变规律。基于全国范围200多个气象站测站逐日气象观测资料,应用FAO-Penman-Monteith公式,计算得出各站历年逐日参照作物腾发量ET0。利用GIS的空间分析功能,采用反距离空间插值方法得到全国参考腾发量的分布图,统计分析了不同分区不同时段ET0的变化情况。结果表明:西北河西走廊地区和南方岭南地区的参考作物腾发量较大,最大值超过1500 mm。而东北黑龙江一带和四川盆地附近,参考作物腾发量较小,在600~700 mm之间。此外,夏季ET0的分布特征决定了全年ET0的分布特征。选取4个代表气象站,对其ET0的历年变化及其与气象因素的关系进行了分析。分析表明,受风速减小和气温增加的共同影响,干旱地区、半干旱地区和半湿润地区的参考作物腾发量呈现减少趋势,湿润地区则相对稳定。  相似文献   

2.
基于随机样本的神经网络模型估算参考作物腾发量   总被引:13,自引:5,他引:13  
参考作物腾发量(ET0)是计算作物需水量、制定灌溉制度和进行水资源管理的主要参数之一。计算参考作物腾发量(ET0)的方法众多,为规范ET0的求法,联合国粮农组织(FAO)推荐采用修改的Penman-Monteith方法。该文指出不需要收集长序列气象资料,而以随机样本建立学习速率和动量因子自适应的BP神经网络模型估算参考作物腾发量(ET0)的方法,并且与FAO推荐的Penman-Monteith法计算值对比分析,结果表明:利用随机样本建立的的BP神经网络模型可以很好的反映气象因子(最高温度、最低温度、最大湿度、最小湿度、净辐射和风速)与参考作物腾发量(ET0)的非线性函数映射关系,并且取得了良好的估算效果,给出了国家自然科学基金重点项目研究区内蓝旗试验站2004年的时间尺度为日、十日参考作物腾发量(ET0)的计算及对比分析过程。  相似文献   

3.
参考作物腾发量是制定灌溉用水计划、水量分配计划最基本、最重要的内容之一,其精确预测可以提高灌溉预报的精度。采用灰色系统理论中的关联分析方法,对影响作物腾发量的各个气象因素进行关联度分析,挑选出影响作物腾发量的主要气象因子,并以这些主要气象因子为输入向量,以参考作物腾发量为输出向量,建立作物腾发量与主要气象因子之间的BP神经网络预测模型。通过实例证明,该方法简单可行,预测精度比较高,能够满足实际生产需要。  相似文献   

4.
参考作物腾发量计算方法在新疆地区的适用性研究   总被引:15,自引:1,他引:15  
新疆维吾尔族自治区地域辽阔,气候特征空间差异性显著。准确估算各地区的参考作物腾发量(ET0)是新疆节水灌溉设计的基础。该文选用6种计算公式利用新疆4个典型气候区的气象资料计算了ET0。并以Penman-Monteith方法作为标准,对其它方法进行评价。结果表明在新疆各气候区1948Penman法估算的ET0值较FAO-24 Penman与FAO-24 Radiation方法更接近于P-M法的计算结果;在缺少资料的地区,Hargreaves方法或湿润区用Priestley-Taylor方法均可以得到与P-M法估值相当的结果;同时分析了P-M法计算的ET0值和水面蒸发量之间的关系,为利用水面蒸发资料估算新疆地区ET0值提供参考。  相似文献   

5.
太子河流域参考作物腾发量演变特征及气候影响因素分析   总被引:3,自引:0,他引:3  
采用太子河流域内8个气象站1960~2005年间气象资料,应用Penman-Montieth公式计算了46年间逐月参考作物腾发量(ET0),对参考作物腾发量及气象要素的年际变化特征、月际变化特征及趋势进行了分析,应用统计检验方法分析了影响流域参考作物腾发量变化的主要气象因素。结果表明:近46年间太子河流域ET0值呈现缓慢下降趋势,年内ET0值分布以5、6月份最高,1月份最低。影响ET0的主要气候要素按影响程度强弱依次为日照、风速、温度、相对湿度。  相似文献   

6.
山西潇河灌区参考作物腾发量和降水的随机特性   总被引:3,自引:1,他引:3  
气象要素的随机变化对于农田水分的动态变化与优化调控具有重要影响。根据山西潇河灌区1978~2003年共26年的气象资料,利用FAO推荐的Penman-Monteith公式计算了逐旬的参考作物腾发量(ET0)。采用时间序列分析方法对ET0序列和降水(P)序列的随机特性进行了分析,并将以上序列分解为趋势项、周期项(包括均值和标准差)和平稳随机项。结果表明:近20多年来潇河灌区ET0序列具有递增趋势,而降水具有递减趋势,同时二序列存在负相关关系;去除趋势项的ET0和P序列的旬均值和标准差具有周期性变化的特征,可以用Fourier级数的二阶分量来描述;二序列的平稳随机成分可以用自回归模型来描述。以上结果可以进一步用于农田墒情的随机预报和作物灌溉制度的随机优化。  相似文献   

7.
纵向岭谷区参考作物腾发量变化的特点和趋势   总被引:4,自引:1,他引:3  
以Penman Montieth方程分析了西南纵向岭谷区大理、元江、保山、昆明、景洪站46~48年的逐日ET0及其余25个站1961~2000年逐月ET0系列。研究结果表明:日最高温度是年内ET0变化主导因素,年际变化主要受日照时数影响,个别站为最高气温或风速,短期ET0变化与雾无直接关系。利用Mann-Kendall法对各站年际、年内分季节ET0趋势检验,56.7%站点的年ET0呈显著增加趋势,分布于澜沧江耿马-思茅-勐海一带以及横断山区维西、福贡等地。分季节逐日ET0变化趋势为,昆明夏秋季显著下降,景洪冬春季显著增加,元江、保山、大理有增有减。降水量增加、气温升高,蒸发和日照时数减少,导致80%的站ET0呈下降趋势,湿润指数普遍增加。  相似文献   

8.
参考作物腾发量(ET0)是计算植被蒸散发的关键因子,准确估算ET0对水资源管理、灌溉制度设计等具有重要意义。本研究利用湘鄂地区46个气象站点1955—2005年的逐月气象数据,包括月最高气温、最低气温、平均风速、日照时数以及相对湿度,用FAO-56 Penman-Monteith法计算各站的逐月ET0值。然后结合基因表达式编程(GEP)算法挖掘公式的能力,以各站点的地理位置信息(纬度、经度、海拔)及月序数为输入,以多年逐月平均ET0值为输出,建立基于地理位置信息的月ET0模型,并与传统ET0模型的计算结果进行比较。结果表明,所建立的模型具有足够的精度,校正、检验阶段的决定系数(R2)和均方根误差(RMSE)分别为0.934、0.951和10.050 mm、8.628 mm;与Hargreaves和Priestley-Taylor法相比,基于地理位置信息建立的GEP模型的结果均方根误差最小,变化范围为8.628~9.967 mm。本研究所建立的月ET0模型具有明确的表达式,简单易用,在湘鄂地区仅利用地理位置信息计算逐月ET0是可行的,可以利用该模型进行月尺度的灌溉制度设计和植被蒸散发的估算。  相似文献   

9.
利用辽宁省凌河流域10个气象站1965-2006年的逐日气象资料,采用FAO推荐的P-M公式计算各站逐日参考作物腾发量(ET0),在分析生长季(4-9月)各气象要素及ET0变化趋势的基础上,用基于敏感系数的贡献值法探讨各气象要素变化对ET0变化的贡献。结果表明:近42a来,凌河流域生长季ET0以21.46mm·10a-1的速率极显著降低(P<0.01),平均值为706.73mm,其中最大值发生在5月,最小值发生在9月;ET0高值区集中在朝阳和北票等地,低值区位于义县一带。研究区生长季太阳辐射以0.293MJ·m-2·d-1·10a-1的速率递减;除阜新外其余各站风速均呈极显著下降趋势(P<0.01);在全球气候变暖的背景下,过去42a凌河流域生长季平均气温以0.289℃·10a-1的速度上升,其中4月和9月变化显著(P<0.05),7月相对稳定。研究区生长季相对湿度变化不大。敏感性分析结果表明,流域内生长季平均ET0对各气象要素变化的敏感性大小依次为太阳辐射>相对湿度>风速>温度,但在研究时段内,显著变化的风速对ET0变化贡献最大,其次为太阳辐射,温度对ET0变化的贡献最小。太阳辐射和风速变化对ET0变化的贡献在流域西部较大,而在东部较小;温度变化对ET0变化的贡献总体上表现为由流域中部向东西两端递减;相对湿度变化对ET0变化的贡献在空间分布上较分散。  相似文献   

10.
Priestley-Taylor与Penman法计算参照作物腾发量的结果比较   总被引:25,自引:13,他引:25       下载免费PDF全文
利用北京气象站50年的气象资料,对两种常用的计算参照作物腾发量的公式——Priestley-Taylor和Penman方法的计算结果进行了比较。年值序列比较显示,Priestley-Taylor结果远小于Penman结果,前者比后者低15%~31%,两者最大相差378.3 mm,最小相差150.9 mm,多年平均相差255.9 mm。对历年逐月序列分析显示,两种方法在7、8月份的结果十分接近,没有显著差异,但其它月份均存在显著差异。造成这种显著差异的原因,既有降雨的影响,又有Penman中空气动力学项的影响,而后者的影响可能更大些。空气动力项与辐射项之比与两种方法的吻合程度呈显著负相关。该比值越大,两种方法的吻合程度越差;反之,吻合程度越好。  相似文献   

11.
参考作物腾发量(reference evapotranspiration, ET0)是农业生产中一项重要的参数,对评估未来的干旱程度和实现农业精细化管理具有重要意义。为进一步提高ET0的预报精度,该研究将多模式集成方法应用于ET0的预报,运用遗传算法-回归型支持向量机对欧洲中期天气预报中心、美国国家环境预报中心、日本气象厅和韩国气象厅4个中心全球集合预报模式输出的天气变量进行多模式集成处理,基于最优的模式和方案使用Penman-Monteith公式对山西运城站未来1~7 d的ET0进行预报,并对其在站点附近农业试验田的适用性进行验证。结果表明,多模式集成能够调和单一模式在气象预报中的优劣,从而提高ET0预报的精度和长预见期下的稳定性;在ET0预报中,多模式方案的性能明显优于原始单一模式,由最优模式和方案组成的重组方案预报性能最好,具有最小的均方根误差、平均绝对百分比误差,分别为0.65~0.81 mm/d和19.43%~23.78%,以及最高的决定系数(0.83~0.89)。在对试验田未来1~7 d的ET0预报中,重组方案仍表现出良好的预报性能,均方根误差、平均绝对百分比误差不超过0.83 mm/d和34.57%。该研究能有效提升数值天气预报在运城站下属乡镇地区的适应性,为当地农业实际生产提供准确的ET0预报信息,对于农业需水预测以及水资源优化管理具有重要意义。  相似文献   

12.
安徽省参考作物蒸散模型参数化   总被引:1,自引:1,他引:0  
模型参数优化是准确估算参考作物蒸散(reference crop evapotranspiration,ET0)的关键问题之一。该研究基于安徽省81个地面气象站点1961—2011年逐日气象数据和合肥、武汉、南京、杭州和南昌5个辐射站1993—2011年的逐日辐射数据,评估日尺度的净长波辐射、气压和水汽压模型在安徽地区的适用性;并结合已有研究获得的最优逐日太阳辐射参数化估算模型,建立安徽省本地化逐日ET0模型的最优参数化方案,探讨模型参数优化对ET0估算的影响。结果表明:7种净长波辐射估算参数化方案中,邓根云法的精度最高,在安徽地区的适用性优于其他方案,建议作为安徽本地化方案使用;FAO56 Penman-Monteith公式中推荐的气压估算模型和基于实测平均气温和相对湿度估算水汽压的模型在安徽省基本适用,但该研究认为在资料能够获取的情况下直接使用实测值为最优。与基于实测资料计算的ET0相比,该研究建立的本地化最优模型估算的ET0在日、月和年尺度上的相对误差分别为15.5%、9.05%和6.12%,能较好地适用于安徽地区。FAO56 Penman-Monteith公式推荐的参数化方案由于高估了安徽地区的太阳辐射,低估了净长波辐射,导致其与基于实测资料计算的ET0值相比,在日、月和年尺度上高估ET0达40.0%以上,不推荐安徽地区直接使用。研究可为安徽省准确估算作物需水量、农业旱涝评估和合理调度水资源等提供依据。  相似文献   

13.
甘肃地区参考作物蒸散量时空变化研究   总被引:25,自引:6,他引:25       下载免费PDF全文
区域水土平衡模型的建立通常需要确定计算参考作物蒸散量的模型,这一模型的精确与否,直接影响整体预测模型的最终预报精度.运用FAO-24 Blaney-Criddle法、FAO-24 Radiation法、FAO PPP-17 Penman法及FAO Penman-Monteith(98) 4种方法,对甘肃省1981~2000年33个站点的月参考作物蒸散量进行了计算.对比分析结果表明,AO Penman-Monteith(98)模型的精度与灵敏度均显示了较强的优越性.运用该模型对甘肃省参考作物蒸散量的时空分布特征进行研究表明:甘肃省参考作物蒸散量年内逐月演变曲线呈单峰状;年际蒸散量变化与夏季年际波动变化存在较高一致性;全年参考作物蒸散量分布具有从东南向西北递增的趋势.  相似文献   

14.
山西寿阳县旱作农业土地生产潜力   总被引:2,自引:0,他引:2  
北方旱区是中国最具开发潜力的农业生产基地,土地生产潜力作为土地最本质的属性,它的研究越来越受到人们的重视。该文以山西寿阳县33 a气候数据、土壤理化数据和图件资料为基础,采用“机制法”对土地生产潜力分别进行了光合、温度、水分和土壤的逐级订正,估算土地生产潜力。研究结果表明:水分不足是气候生产潜力的主要限制因子,经水分订正后,多年平均气候生产潜力相对光温生产潜力减少了三分之二;土地生产潜力分布特点基本满足地形地貌类型的分布特点,河谷盆地生产潜力较高,山地部位生产潜力较低,而土壤养分总体含量较低,存在重用轻养现象,肥力补偿差。  相似文献   

15.
利用野外试验小区观测与人工模拟降雨资料,在定量分析羊道沟小流域坡面—沟坡—沟道侵蚀产沙关系基础上,建立了羊道沟小流域侵蚀产沙模型。借助GIS技术,将王家沟小流域划分为40个沟间地、40个沟坡地及它们组成的40个子流域和一个输水输沙通道。通过对比分析每个子流域降雨、地貌、治理、植被覆盖、耕作措施和土壤6个主要侵蚀产沙影响因子与羊道沟小流域各因子的关系,得到王家沟各子流域相对于羊道沟小流域侵蚀产沙模型相应参数的修正系数,结合王家沟流域主沟道泥沙输移关系,建立了王家沟流域次降雨分布式侵蚀产沙模型。利用王家沟流域1963-1968年22次天然降雨资料,对模型进行检验,结果较为理想,预测精度达到55%。  相似文献   

16.
陕西关中地区参考作物蒸发蒸腾量变化及原因   总被引:7,自引:2,他引:7  
根据关中地区30个气象站41年的气象资料,采用FAO推荐的Penman-Monteith公式计算参考作物蒸发蒸腾量(ET0),分析了陕西关中地区ET0的变化及原因,结果表明,从长期来看,关中地区ET0在减少趋势的基础上表现出周期性变化,从阶段性来看,1980年之前和之后则主要表现为增加趋势。关中地区年内ET0的最大值在1980年前主要出现在6月,1980年以后则主要出现在6月和7月,且以7月为多;1980年后5~8月ET0所占比值在减少,但仍在全年中占50%以上。关中地区平均气温、最高气温和最低气温表现为增加趋势,风速、日照时数和相对湿度表现为减少趋势。关中地区ET0与平均气温、最高气温和最低气温表现为不显著正相关,与风速和日照时数表现为显著正相关,与水汽压表现为显著负相关,与年降水量表现为不显著负相关,近一半地区的ET0与年蒸发量显著正相关。对关中地区ET0影响显著的气象因子的顺序为:风速〉日照时数〉水汽压〉年蒸发量。即风速和日照时数的减少趋势是引起关中地区ET0降低趋势的主要原因。  相似文献   

17.
青海省东部高原农业区参考作物蒸散量的时空变化   总被引:9,自引:5,他引:4  
为了确定变化环境下青海省东部高原农业区合理的作物灌溉制度,对参考作物蒸散量进行了时空变化分析。采用Penman-Monteith公式以及12个气象站的气象资料计算了青海省东部农业区1960-2006年参考作物蒸散量,用Mann-Kendall检验、Morlet小波分析、以及GIS的空间分析功能,分析了参考作物蒸散量的时间、空间变化特征。结果表明:从时间尺度上看,研究区平均参考作物蒸散量随时间呈显著的下降趋势,突变的时间约为1974年,主周期为25a左右,在这个时间尺度上参考作物蒸散量表现为多→少→多3个循环交替的过程。从空间尺度上看,参考作物蒸散量南高北低,东高西低,在东南-西北方向上递减,具有明显的地区差异,夏季参考作物蒸散量分布在很大程度上影响了全年参考作物蒸散量的分布特征。影响参考作物蒸散量的主要气象因素为日照时数、风速。海拔高度与参考作物蒸散量呈显著的负相关关系,海拔高度是造成参考作物蒸散量地区差异的另一主要原因。  相似文献   

18.
基于气象-生理的夏玉米作物系数及蒸散估算   总被引:1,自引:1,他引:0  
准确估算作物系数对预测作物实际蒸散量和制定精准的灌溉计划至关重要。为反映作物逐日作物系数变化,综合考虑气象和生物因子对作物生长的共同影响,采用五道沟水文实验站大型蒸渗仪夏玉米实测蒸散及气象数据,基于地温及叶面积指数建立了气象-生理双函数乘法模型,并结合梯度下降法对模型进行了精度优化。结果表明,在整个玉米生长期中,作物系数实测值和计算值平均绝对误差为0.12,均方根误差为0.15,相关性为0.91,蒸散量实测值与计算值平均绝对误差为1.0 mm/d,均方根误差为4.5 mm/d,相关性为0.75。该模型计算的全生育期蒸散量准确率(误差在2~3 mm/d以内)相比使用联合国粮农组织(FAO)推荐的作物系数计算所得准确率提高了3倍以上,可更精确用于作物系数及蒸散量计算。  相似文献   

19.
为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration, ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine, ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。  相似文献   

20.
流域参考作物蒸发蒸腾量(ET0)插值方法的研究对流域尺度作物耗水时空变化规律有重要意义。该文通过海河流域162个国家农业气象站3a(2003-2005年)旬值气象资料,利用Penman-Monteith公式计算了这些站点ET0,采用ArcGIS软件中常用的Spline、IDW和Ordinary Kriging(OK)法,以及近些年研究较多的线性回归Regression插值法,对不同站点密度条件下的ET0进行空间插值。分析了各空间插值方法在不同站点密度条件下的优劣性,并且给出了本流域内各种站点密度范围条件下计算ET0最适宜的插值方法。结果表明以站点密度1.3个/万km2为界,当站点密度低于此密度时,推荐使用Regression插值法;当站点密度大于1.3个/万km2时,推荐使用IDW和OK插值法;当站点密度大于4.3个/万km2,以上三种插值法并无显著差别;不推荐使用Spline插值法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号