首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted on a tropical Inceptisol at Apia, Western Samoa to evaluate the effects of alley cropping on soil characteristics, weed populations, and taro yield. Taro yields were compared from Calliandra calothyrsus and Gliricidia sipium alleys, spaced at 4 m, 5 m, and 6 m, and a no tree control. Measurements were made for soil moisture and temperature, weed growth, hedge biomass production, and taro growth and yield. Data was analyzed over 4 consecutive years from 1988 to 1991.Hedge biomass yields ranged from 5.1 to 16.1 t/ha/yr dry weight over the 4 years of the trial, with Calliandra and Gliricidia performing equally well. Biomass yields decreased by about 2 mt/ha with increasing alley width from 4 to 6 m alleys. Weed populations were significantly lower in the 4 m alleys compared to the 5 m, 6 m, and control plots. The 6 m alleys supported the significantly highest weed populations. Soil from alley plots held significantly more water in the 0.3 to 1 bar range than soils from the controls. Four years of mulch application measurably improved soil water holding capacity and bulk density. However, no improvement was seen in nitrogen, phosphorus, potassium, calcium, magnesium and organic carbon content in the alley plots compared to the controls. There was no positive yield effect of alley cropping on taro yield. Yields in the 5 m and 6 m alleys were not significantly different from the control, while the 4 m alleys produce significantly lower yields than the control. Thus, alley cropping did not prove a viable alternative to traditional shifting cultivation after 4 years of continuous cropping, in this trial.  相似文献   

2.
Little information is available on soil respiration and microbial biomass in soils under agroforestry systems. We measured soil respiration rate and microbial biomass under two age classes (young and old) of a pecan (Carya illinoinensis) — cotton (Gossypium hirsutum) alley cropping system, two age classes of pecan orchards, and a cotton monoculture on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudult) in southern USA. Soil respiration was quantified monthly during the growing season from May to November 2001 using the soda-lime technique and was corrected based on infrared gas analyzer (IRGA) measurements. The overall soil respiration rates ranged from 177 to 776 mg CO2 m–2 h–1. During the growing season, soil respiration was higher in the old alley cropping system than in the young alley cropping system, the old pecan orchard, the young pecan orchard, and the monoculture. Microbial biomass C was higher in the old alley cropping system (375 mg C kg–1) and in the old pecan orchard (376 mg C kg–1) compared to the young alley cropping system (118 mg C kg–1), young pecan orchard (88 mg C kg–1), and the cotton monoculture (163 mg C kg–1). Soil respiration was correlated positively with soil temperature, microbial biomass, organic matter, and fine root biomass. The effect of alley cropping on soil properties during the brief history of alley cropping was not significant except in the old systems, where there was a trend of increasing soil respiration with short-term alley cropping. Over time, different land use and management practices influenced soil properties such as soil temperature, moisture, microbial biomass, organic matter, and fine root biomass, which in turn affected the magnitude of soil respiration. Our results suggest that trees in agroforestry systems have the potential to enhance soil fertility and sustainability of farmlands by improving soil microbial activity and accreting residual soil carbon.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Although alley cropping has been shown elsewhere to permit continuous cropping, it has not been widely tested in the highlands of east and central Africa where it has the additional potential of controlling soil erosion. The effect of four rates (0, 30, 60 and 90 kg N ha–1) of inorganic N on the performance of alley cropping using Leucaena diversifolia as the hedgerow species was studied in the central highlands of Burundi. Significant increase in maize yield (average of 26%) due to alley cropping was only first realised in 1992, three years after the commencement of the trial. In 1993, the average yield advantage of the alley cropping plots was 21%. The prunings augmented the response of maize yield to inorganic N in 1992 and 1993. Compared with the control, economic benefits over the five-year period for all the treatments were negative.  相似文献   

4.
This study examined the effect of alley cropping of Leucaena leucocephala and Faidherbia albida on wood biomass, maize grain yield and soil nitrogen status. The treatments were: trees planted alone at 1 × 5 m spacing; trees intercropped with maize and a sole maize crop. Mulch biomass averaged 6.18 and 0.97 t ha−1 for L. leucocephala and F. albida, respectively. Corresponding wood production was 1.71 and 1.11 t ha−1. Both total N and inorganic N (NO 3 –N plus 4 + –N) were higher under F. albida and lowest under L. leucocephala. Similarly, foliar N concentration in maize was higher in plots intercropped with F. albida and least in L. leucocephala intercropping. Maize grain yield was little affected by the tree intercrop as competition for resources was reduced through periodic pruning and clean weeding. There was no gain in maize grain yield due to the presence of L. leucocephala and F. albida. These results suggest that alley cropping in Gario is justified for wood production but not for increasing maize grain yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Incorporating cover crops into Christmas tree plantations may potentially improve soil fertility, tree growth and quality and be an alternative to commercial nitrogen (N) fertilizers. However, cover crops may compete with the trees for water and other nutrients than N. This study was carried out to assess whether soil fertility, tree survival and growth could be improved by incorporating leguminous and non-leguminous cover crops into the Fraser fir (Abies fraseri) production system. Dutch white clover (Trifolium pratense), alfalfa (Medicago sativa) and perennial ryegrass (Lolium perenne) were grown in a newly established Fraser fir plantation using two cover crop management practices; no banding (NB) by growing each cover crop throughout the entire plot and banding (B) by creating a 61 cm-wide bare zone centered on the tree rows. A conventionally-managed system (CONV) was used as a control. The cover crop aboveground biomass and N content were assessed. Soil available N (NO3 and NH4 +) and N mineralization were measured at 0–15, 15–30 and 30–45 cm soil depths. Tree survival, growth, photochemical efficiency of photosystem II (Fv/Fm), branch water potential (Ψw) and foliar nutrients were also evaluated. Biomass production was as high as 13.9, 10.2 and 5.9 Mg DM ha−1 year−1 for clover, alfalfa and ryegrass, respectively. Cover cropping increased soil available N by 1.5- and 2.2-fold relative the CONV in the top soil layer in 2007 and 2008, respectively. Tree seedling survival and growth in the B and CONV systems were similar. In contrast, NB treatments resulted in poor seedling survival and growth relative to the B and CONV plots. Plant Ψw and Fv/Fm decreased significantly for A. fraseri seedlings on the NB treatments relative to their counterparts on the B and CONV plots. However, cover cropping had marginal effects on foliar nutrients. Cover cropping with banding can be an efficient strategy for maintaining productivity in Fraser fir Christmas plantations.  相似文献   

6.
Food production in the densely populated Rwandan highlands is impeded by soil erosion and loss in fertility. Alley cropping leguminous shrubs with food crops on contours is purported to minimize the problem and to provide wood and forage. This study reports the effect of Sesbania prunings plus moderate levels of N and P on bean (Phaseolus sp) and maize (Zea mays) yields in alley cropping. Experimental design was a randomized complete block with split-split plots. Main plots were alley width: 2, 4, 6 and 8 m. Phosphorus (P) at 0, 30 and 60 kg P2O5/ha occupied the subplot and nitrogen (N) at 0, 30 and 60 kg/ha were assigned at the sub-sub plot level. No P was applied to maize during the second cropping season. Crop yield in kg/ha included the land space taken by hedgerows. Bean yield in 6 m alleys (1100 kg/ha) was about twice that in 2 m alleys (500 kg/ha). Bean responded to N and P. Optimum alley width and N for bean yield were 6 m and 30 kg/ha, respectively. Cuttings from alley hedgerows provided stakes for climbing beans. Maize responded to N but not to residual P. The highest maize yield came from 8 m alleys with 40 kg/ha, but yields from 8 and 6 m alleys with the same N treatment were not significantly different. Maize plants in middle rows were significantly taller than plants in rows adjacent to hedgerows. Maize rust development showed significant alley width and row position effect. There were significantly fewer uredinia in the Sebania alleys relative to the control plots without shrub hedgerows. Rust development on maize in middle rows was significantly greater than development in border rows.  相似文献   

7.
Soil physical and chemical properties in the crop alleys and tree rows in alley cropping systems vary greatly due to differences in litter quality and microclimate under trees compared to the alleys. Variations in soil properties influence microbial diversity and function, and thus, in alley cropping systems, bacterial diversity could be different between soils in tree rows and crop alleys. The objective of this study was to compare and contrast soil bacterial diversity in the crop alleys and tree rows in a 21-year-old alley cropping system in Northeast Missouri, USA. Soil samples were taken in three parallel transects to a depth of 10 cm in the tree row and at the middle of the alley in a silver maple (Acer saccharinum) alley cropping system with a companion maize (Zea mays)—soybean (Glycine max) rotation. Soil bulk density, C and N concentrations were similar between the different transects while minor differences were observed between crop alleys and tree rows. No significant difference in bacterial diversity was observed between the tree rows and alley soil based the denaturing gradient gel electrophoresis profiles, band richness (19.6 and 22.8 for tree row and alley, respectively) and Shannon–Weiner diversity (2.958 and 3.099 for tree row and alley, respectively). Identification of bacterial genera revealed dominance of gram +ve as well as gram ?ve bacteria in both soil types. Ordination plot revealed no clustering effect based on location (transect) or on the cropping system in the different samples. Bacterial diversity in crop alleys most likely was influenced not only by the maize-soybean rotation, but also by the tree rows contributing both above and belowground litter for the past 21 years.  相似文献   

8.
Effect of alley cropping on soil aggregate stability of a tropical Alfisol   总被引:2,自引:0,他引:2  
The beneficial effect of organic matter on soil aggregate stability is well documented. Alley cropping has been suggested as a possible alternative to maintain soil organic matter content in cropping systems without fallowing the land. The objective of this study was to asses the effect of alley cropping on dry and wet soil aggregate stability on land degraded by shifting cultivation. The aggregate size distribution by dry sieving, aggregate stability by wet sieving, soil organic Carbon content and soil bulk density were measured following two and three years of alley cropping with Gliricedia (Gliricidia sepium) and Pigeon pea (Cajanas cajan) in a tropical Rhodustalf. Alley cropping increased the mean aggregate diameter and water stability of soil aggregates. The mean aggregate diameter obtained from dry sieving increased from 1.3 mm of the control to 2.68 and 3.11 mm after three years in Pigeon pea and Gliricidia alley cropped plots, respectively. This is an indication of resistance to wind erosion in alley cropped plots. The wet aggregate stability which shows the resistance to erosion by water also increased in alley cropped plots. These increases were significant after three years of hedge row establishment. The increase in soil organic C in alley cropped plots contributed to the higher dry and wet aggregate stability, and decreased soil bulk density. The improvement was higher in plots alley cropped with Gliricidia than Pigeon pea. This study shows the importance of ally cropping in increasing aggregate stability of degraded sandy soils which in return reduce erosion by wind and water.  相似文献   

9.
The effect of tree harvesting on soil mineral nitrogen and microbiological activity were investigated in an agrisilvicultural system consisting of wheat cultivated along the sides of a poplar plantation in Sweden from 1993 to 1995. Sampling for mineral nitrogen was carried out in three layers down to 90 cm at two distances, near (0.5–1.5 m) and far (4.0–5.0 m) from rows of standing, ST, and harvested trees, HT. Sampling for basic respiration and substrate-induced respiration was carried out in the 0–10 cm layer in 1993 and in the 0–10 cm and 10–20 cm layers in 1994 at the same distances from trees.There was a higher concentration of ammonium and lower concentration of nitrate closer to trees, indicating an efficient uptake of nitrate by trees and enhanced N mineralization close to trees. Shortly after tree harvesting, there were higher concentrations of nitrate and ammonium in the 0–30 cm soil layer near the harvested trees than near standing trees, suggesting a derease in nitrogen uptake by tree roots. The soil microbiological activity was lower in the harvested than the standing plots of trees, which is considered as an indication of the important role of root exudates in maintaining a larger microbial biomass close to trees.  相似文献   

10.
This study was conducted to assess the suitability of two fallow species that are indigenous to West Africa, M. thonningii (Schum and Thonn) and P. santalinoides (L'Her), for alley cropping with maize and their effect on soil chemical properties. It was carried out during the rain-fed cropping season at Ibadan, Nigeria and Mbalmayo, Cameroon in 1993 and 1994. Total dry matter of P. santalinoides prunings was higher at the two sites than that of M. thonningii by about 35% to 37%. Maize grain yield in plots supplied with prunings was significantly higher (P > 0.05) than in control (no prunings or fertilizer application) at Ibadan. Grain yield in plots supplied with prunings plus 40 kg ha−1 urea fertilizer gave significantly higher yields than plots supplied with 80 kg N ha−1 urea fertilizer only. At Mbalmayo, there was no significant difference between grain yield in plots supplied with 80 kg N ha−1 and plots supplied with prunings plus 40 kg N ha-1 urea fertilizer though the latter had higher yields. Grain yield was also higher in the middle rows than in rows adjacent to the hedgerows and these were not significantly different. Weed dry matter was reduced by 27% to 43% when Pterocarpus prunings were applied and 13% to 31% with application of Millettia prunings. Weed flora in both locations changed from grasses to broad leaved. Soil chemical changes at soil depth 0 to 10 cm showed significant increases (pH, C, N, P and Ca) after two cropping seasons in plots supplied with prunings or prunings plus fertilizer than the initial values. At Mbalmayo, K was lower after cropping in treatments than the initial values while at Ibadan, K and Mg were lower except in plots supplied with Pterocarpus prunings only. P. santalinoides and M. thonningii have significant potential for agroforestry in this sub-region. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization rate in three successive rotations of Chinese fir plantations in subtropical China were investigated.Net N mineralization and nitrification rates in soils treated with phenolic acids were measured in an ex situ experiment.Compared with first-rotation plantations(FCP),the contents of total soil nitrogen and nitrate in second(SCP)-and third-rotation plantations(TCP)decreased,and that of soil ammonium increased.Soil net N mineralization rates in the second-and third-rotation plantations also increased by 17.8%and 39.9%,respectively.In contrast,soil net nitrification rates decreased by 18.0%and 25.0%,respectively.The concentrations of total phenolic acids in the FCP soils(123.22±6.02 nmol g^-1)were 3.0%and 17.9%higher than in the SCP(119.68±11.69 nmol g^-1)and TCP(104.51±8.57 nmol g^-1,respectively).The total content of phenolic acids was significantly correlated with the rates of net soil N mineralization and net nitrification.The ex situ experiment showed that the net N mineralization rates in soils treated with high(HCPA,0.07 mg N kg^-1 day^-1)and low(LCPA,0.18 mg N kg^-1 day^-1)concentrations of phenolic acids significantly decreased by 78.6%and 42.6%,respectively,comparing with that in control(0.32 mg N kg^-1 day^-1).Soil net nitrification rates under HCPA and LCPA were significantly higher than that of the control.The results suggested that low contents of phenolic acids in soil over successive rotations increased soil net N mineralization rates and decreased net nitrification rates,leading to consequent reductions in the nitrate content and enhancement of the ammonium content,then resulting in enhancing the conservation of soil N of successive rotations in Chinese fir plantation.  相似文献   

12.
Green manure applications in alley cropping systems often include twigs despite their potential to absorb (immobilize) nitrogen (N). To assess the impact of twigs on net N mineralization or immobilization from hedge row cuttings, we separated cuttings fromCalliandra calothyrsus andGliricidia sepium into leaf-only, twig-only, and mixed (leaf + twig) fractions and incubated them with moist soil in the laboratory. Soil extractable inorganic N did no differ among treatments after two weeks, but after four and eight weeks was greatest in leaf-only, and least in twig-only treatments. After two weeks, extractable N from the leaf-only treatment rose steadily, while that from the twig-only and mixed treatments was variable due to periods of net mineralization and net immobilization. The pattern of variation in mixed treatments paralleled that of twig-only, indicating that net immobilization in the mixture was largely caused by the presence of twigs. Extractable N from the mixture was somewhat lower than that predicted from the sum of leaf-only and twig-only treatments. We conclude that twigs in green manure reduce short-term N availability to associated crops in agroforestry systems.  相似文献   

13.
We hypothesized that tree-based intercropping in southwestern Québec, Canada, would stimulate soil microbial activity and increase soil nutrient supply, thereby benefiting the growth of trees. Our experimental design comprised alternating rows of hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry) and high-value hardwood species spaced 8 m apart, between which two alley treatments were applied 5–6 years after planting the trees. The first alley treatment consisted of a fertilized soybean (Glycine max (L.) Merr.) intercrop grown over two consecutive years, while the second consisted of repeatedly harrowing to minimize vegetation in the alley. Tree rows were mulched with a 1.5 m wide polythene mulch. Microbial respiration and biomass, and mineral N concentrations and mineralization rates were measured on five or six dates at 0, 2 and 5 m from hybrid poplar rows. On some of the sampling dates, we found significantly higher soil microbial biomass, mineral N concentrations and nitrification rates, and a significantly lower microbial metabolic quotient (qCO2), in the soybean intercropping than in the harrowing treatment. Over the 2 year period, hybrid poplar biomass increment and N response efficiency (NRE) were significantly higher (51 and 47%, respectively) in the intercropping than in the harrowing treatment. Microbial biomass and mineral N supply were significantly lower beneath the polyethylene mulch than in the alleys, and we posit that this may stimulate the growth of tree roots into the alley. We conclude that soybean intercropping improves nutrient turnover and supply for hybrid poplar trees, thereby increasing the land equivalent ratio (LER).  相似文献   

14.
Two projects on alley cropping research and development have been implemented in the Forest zone of Cameroon (FZC) since 1988. Their goal was to identify the main agricultural constraints in the FZC and to introduce alley cropping in the farming systems to improve soil fertility and crop yields. The first step in the implementation process was the participatory surveys which revealed that (a) the main agricultural constraint in the FZC is low soil fertility; (b) alley cropping is an agroforestry technology which may solve the problem; (c) alley cropping should be first targetted to farmers who own inherited or purchased lands. The second step was the on-station tree screening activity from which Leucaena leucocephala, Gliricidia sepium, Calliandra calothyrsus and Paraserianthes falcataria were identified as promising tree species. The third activity was to test alley cropping with three promising tree species (Leucaena, Gliricidia and Calliandra) on farmers' fields. Results from the first year testing on farmers' fields showed that: (1) the direct seeding method used was ineffective: seedling emergence rate was 45% for Leucaena and 52% for Gliricidia; (2) Cassava suppressed the growth of Leucaena and Gliricidia by 57 and 45%, respectively; (3) three-month-old Calliandra seedlings planted 1 m away from cassava plants had 96% survival rate. Based on these third step findings, all new farms were established with Calliandra seedlings using maize as a test-crop in the year of establishment and the subsequent year. After two years of cropping, maize grain yield in alley plots was 52% higher than maize grown on no-tree plots. In 1993, 52 farmers who had witnessed the alley farm maize growth in 1992 requested to join the project. This sudden interest of farmers to start their own alley farms was considered as a positive sign for adoption and therefore a success in alley cropping (AC) introduction in the zone.  相似文献   

15.
The study describes effects of clear‐felling and soil scarification on the N concentration and pH of soil water in experimental plots previously supplied with different doses of N. The experiment is situated in central Sweden in a former Pinus sylvestris L. stand. Over a 20‐yr period, plots were fertilized three times with ammonium nitrate, resulting in total doses of 360, 720, 1080, 1440 and 1800 kg N ha‐1. Soil water was sampled at a depth of 40–50 cm using suction lysimeters, and analysed for N and pH. The study covers one growing season before clear‐felling and six and four growing seasons after clear‐felling and soil scarification, respectively. Statistically significant (p < 0.05) elevations in total N and nitrate‐N concentrations were noted in the fourth to the sixth growing seasons after clear‐felling in the plots that had received 1800 kg N ha‐1, and in the fifth and sixth seasons in the plots that had received 1440 kg N ha‐1. Ammonium‐N concentrations were not significantly affected. After clear‐felling, total N and nitrate‐N increased with time at a higher rate in the plots that had received 1440 and 1800 kg N ha‐1 doses compared with the control. In the sixth post‐cutting season, the nitrate‐N concentration was 0.26 mg l‐1 in the control and between 0.51 and 4.0 mg l‐1 in the various fertilized plots. Before clear‐felling, a linear relationship between pH and fertilizer dose was absent. After clear‐felling, negative relationships prevailed, but they differed significantly from the pre‐cutting relationship only during the fourth, fifth and sixth post‐cutting seasons. In the sixth post‐cutting season, the pH was 6.0 in the control, and 6.1, 5.7, 5.6, 5.2 and 4.3 in the plots supplied with 360, 720, 1080, 1440 and 1800 kg N ha‐1 doses, respectively. The absolute difference in pH between the sixth growing season after clear‐felling and period before clear‐felling increased linearly with increasing fertilizer dose (p < 0.05, R 2 = 0.79). Before clear‐felling, nitrate‐N was elevated only in the plots that had received 1800 kg N ha‐1. After clear‐felling, nitrate‐N seemed to increase in all fertilized plots, but the increase began first in the plots receiving the highest fertilizer dose. It was not until the fifth and sixth growing seasons after clear‐felling that nitrate‐N concentrations appeared elevated in all fertilized plots compared with the control. It seems likely that nitrification caused the increases in nitrate‐N because nitrate‐N accounted for most of the variation in pH in the fourth to the sixth growing seasons. Disc trenching was simulated around some of the lysimeters so that 50% of the soil was disturbed. This did not significantly affect the N concentration or pH of the soil water during the first 4 yrs after scarification.  相似文献   

16.
Soil inorganic N is one of the most important soil quality indexes, which may be influenced by land-use change. The historical conversion of land-use from native vegetation to agriculture resulted in sharp declines in soil N dynamics. This study was conducted to determine the soil inorganic N concentrations and net N mineralization rate in four common types of land-uses in the mountain forest area in the north of Iran, namely arable land, pine plantation, ash plantation, and beech stand. The soil samples were taken from top mineral soil layer (5cm) in each site randomly (n=6) during August- September 2010. Beech stand and ash plantation showed significantly higher total nitrogen compared with arable land and pine plantation, while extractable NH 4 + -N concentration was significantly greater in Beech stand compare to arable soils (p<0.05). No significantly difference was found in Net N mineralization, net nitrification and net ammonification rates among different land-uses. Results showed that net N mineralization and ammonification were occurred just in the soil of Ash plantation during the incubation time. Our findings suggested that conversion of Hyrcanian forests areas to pine plantation and agricultural land can disrupt soil natural activities and affect extremely soil quality.  相似文献   

17.
Maize growing next toErythrina hedgerows had 44% lower biomass (p<0.01) and 35% lower N content (p<0.1) than maize growing in the middle of the alleys. Maize growing next toGliricidia hedgerows had the same biomass but 56% higher N content (p<0.1) than maize growing in the middle of the alleys. However these differences did not develop until 2 months after sowing of the maize.Spatial variability in soil nitrogen mineralization and mulch nitrogen release did not explain any of the differences in growth or N uptake of the maize with respect to distance from the trees. It is hypothesized that the slower growth of the maize next to theErythrina trees after 2 months is due to increasing light and/or nutrient competition from the trees as the trees recover from pollarding. The apparent lack of competition fromGlirigidia may be due to different rates of regrowth or different shoot and root architecture.A theoretical model is described demonstrating that if a crop is to take advantage of the higher nutrient availability under alley cropping it must complete the major part of its growth before the trees recover significantly from pollarding, and start competing strongly with the crop.  相似文献   

18.
以亚热带杉木人工林为研究对象,研究添加葡萄糖(C量水平分别是0,100,300,1 000,2 000,5 000 mg·kg-1)对土壤氮含量、氮素矿化和硝化的影响。结果表明,葡萄糖添加降低土壤无机氮含量和比例,硝态氮的降低幅度大于铵态氮;但是没有降低可溶性有机氮(SON)和pH值,甚至提高SON的比例。添加葡萄糖降低氮素净矿化和硝化速率,氮素矿化作用受到抑制。结果显示,随着葡萄糖添加,亲水性氮所占比例显著降低,这与氮的固持和转化有关,导致SON比例增加;分析表明,硝态氮和可溶性有机氮在提取液全氮中所占比例成显著的线性负相关关系(R2=0.902)。研究发现,1 000 mg·kg-1的葡萄糖C添加量可能是影响杉木人工林土壤氮素转化的分界点。  相似文献   

19.
On fertile alluvial soils on the lakeshore plain of Malawi, maize (Zea mays L.) yields beneath canopies of large Faidherbia albida (synAcacia albida) trees greatly exceed those found beyound tree canopies, yet there is little difference in soil nutrients or organic matter. To investigate the possibility that soil nutrient dynamics contribute to increased maize yields, this study focused on the impact of Faidherbia albida on nitrogen mineralization and soil moisture from the time of crop planting until harvest. Both large and small trees were studied to consider whether tree effects change as trees mature.During the first month of the rainy season, a seven-fold difference in net N mineralization was recorded beneath large tree canopies compared to rates measured in open sites. The initial pulse beneath the trees was 60 g N g–1 in the top 15 cm of soil. During the rest of the cropping cycle, N availability was 1.5 to 3 times higher beneath tree canopies than in open sites. The total production of N for the 4-month study period was 112 g N g–1 below tree canopies compared to 42 g N g–1 beyond the canopies. Soil moisture in the 0–15 cm soil layer was higher under the influence of the tree canopies. The canopy versus open site difference grew from 4% at the beginning of the season to 50% at the end of the cropping season.Both N mineralization and soil moisture were decreased below young trees. Hence, the impact of F. albida on these soil properties changes with tree age and size. While maize yields were not depressed beneath young F. albida, it is important to realize that the full benefits of this traditional agroforestry system may require decades to develop.  相似文献   

20.
Nitrogen is normally the nutrient most limiting production of maize (Zea mays) — the main staple food crop — in southern Africa. We conducted a field study to determine the effect of N sources on soil nitrate dynamics at three landscape positions in farmers' fields in southern Malawi. The landscape positions were dambo valley or bottomland, dambo margin, and steep slopes. The N sources were calcium ammonium nitrate fertilizer applied at 120 kg N ha–1, biomass from Sesbania sesban, and no added N. Sesbania biomass was produced in situ in the previous season from sesbania relay cropped with maize. Nitrate in the topsoil (0 to 15 cm depth) increased to 85 days after maize planting (mean = 48 kg N ha–1) and then decreased markedly. Application of N fertilizer and sesbania biomass increased soil nitrate, and nitrate-N in topsoil correlated positively with amount of incorporated sesbania biomass. The strongest correlation between sesbania biomass added before maize planting and topsoil nitrate was observed at 85 days after maize planting. This suggests that the sesbania biomass (mean N content = 2.3%) mineralized slowly. Inorganic N accumulated in the subsoil at the end of the maize cropping season when N fertilizer and sesbania were applied. This study demonstrated the challenges associated with moderate quality organic N sources produced in smallholder farmer's fields. Soil nitrate levels indicated that N was released by sesbania residues in the first year of incorporation, but relay cropping of sesbania with maize may need to be supplemented with appropriately timed application of N fertilizer.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号