首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compartmental and non-compartmental pharmacokinetic study was carried out on rabbits after intravenous (i.v.) administration of levamisole at the three dose rates: 12.5, 16.0 and 20.0 mg/kg body weight. Using compartmental analysis, the disposition of levamisole best fitted a two-compartmental open model with mean values of alpha = 0.1278, 0.1019 and 0.1282 min-1; beta = 0.0139, 0.0126 and 0.0124 min-1; A = 6.24, 5.27 and 10.58 micrograms/ml and B = 2.14, 3.83 and 5.08 micrograms/ml for each dose, respectively. The statistical moment theory was mainly used for non-compartmental analysis. Values for mean residence time (MRT) of 69.2, 71.7 and 73.1 min were obtained for each dose. The mean values for volume of distribution at steady state (Vd(ss)), determined by compartmental analysis, were 3879, 3279 and 2735 ml/kg for each dose, and values obtained using the statistical moment theory were 3760, 3015 and 2943 ml/kg; there were no statistically significant differences using Student's paired t-test. Identical conclusions were obtained using both methods when the parameters beta, AUC and Cl were compared.  相似文献   

2.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

3.
ObjectiveTo evaluate total intravenous anesthesia with propofol alone or in combination with S(+)-ketamine in rabbits undergoing surgery.Study designProspective, randomized, blinded trial.AnimalsNine 6-month-old New Zealand white rabbits, weighing 2.5–3 kg.MethodsAnimals received acepromazine (0.1 mg kg?1) and buprenorphine (20 μg kg?1) IM, and anesthesia was induced with propofol (2 mg kg?1) and S(+)-ketamine (1 mg kg?1) IV. Rabbits received two of three treatments: propofol (0.8 mg kg?1 minute?1) (control treatment, P), propofol (0.8 mg kg?1 minute?1) + S(+)-ketamine (100 μg kg?1 minute?1) (PK100) or propofol (0.8 mg kg?1 minute?1) + S(+)-ketamine (200 μg kg?1 minute?1) (PK200). All animals received 100% O2 during anesthesia. Heart rate, mean arterial pressure, hemoglobin oxygen saturation and respiratory rate were measured every 5 minutes for 60 minutes. Blood-gas parameters were measured at zero time and 60 minutes. Additional propofol injections, if necessary, and recovery time were recorded.ResultsAn increase in heart rate was observed in P and PK200 up to 10 minutes after induction of anesthesia. Blood pressure decreased from baseline values during the first 10 minutes in P and PK200, and during the first 15 minutes and between 45 and 55 minutes in PK100. A reduction in respiratory rate was observed after 5 minutes in all treatments. Respiratory acidosis was observed in all treatments. Six (2.8) [median (interquartile range)] further propofol injections were necessary in P, which differed statistically from PK100 [1 (0.2)] and PK200 [2 (0.6)]. Recovery time was shorter in P compared with PK100 and PK200, being [7.5 minutes (4.11)], [17.5 minutes (10.30)], and [12 minutes (10.30)], respectively.Conclusions and clinical relevanceS(+)-ketamine potentiates propofol-induced anesthesia in rabbits, providing better maintenance of heart rate. All of these techniques were accompanied by clinically significant respiratory depression.  相似文献   

4.
Tissue disposition of azithromycin after intravenous (IV) or intramuscular (IM) injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits using a modified agar diffusion bioassay for determining tissue concentrations. The pharmacokinetic behaviour of azithromycin was characterized by low and sustained plasma concentrations but high and persistent tissue concentrations. Kinetic parameters indicated a high retention of the drug in peripheral compartments. The plasma half-lives after IV and IM administrations were similar being 21.8h and 23.1h, respectively, while the half-lives obtained in tissues after IV and IM administration were at least 1.4 and 1.9 times longer than in plasma, respectively. The highest tissue concentrations were found in bile, liver and spleen whereas the lowest ones were found in skeletal muscle (although they were higher than those in plasma). From the results of the single administration in this study an IM dosage regimen can be proposed that achieves minimum concentrations over 2mg/L in rabbits: three doses of 4-5mg/kg/day would provide suitable therapeutic concentrations in pulmonary tissues over seven days.  相似文献   

5.
The pharmacokinetic behaviour and bioavailability of enrofloxacin (ENR) were determined after single intravenous (iv) and intramuscular (im) administrations of 5mg/kg bw to six healthy adult Angora rabbits. Plasma ENR concentrations were measured by high performance liquid chromatography. The pharmacokinetic data were best described by a two-compartment open model. ENR pharmacokinetic parameters were similar (p>0.05) for iv and im administrations in terms of AUC0-infinity, t1/2beta and MRT. ENR was rapidly (t1/2a, 0.05 h) and almost completely (F, 87%) absorbed after im injection. In conclusion, the pharmacokinetic properties of ENR following iv and im administration in Angora rabbits are similar to other rabbit breeds, and once or twice daily iv and im administrations of ENR at the dose of 5mg/kg bw, depending upon the causative pathogen and/or severity of disorders, may be useful in treatment of infectious diseases caused by sensitive pathogens in Angora rabbits.  相似文献   

6.
OBJECTIVE: To determine the pharmacokinetics of ketamine and norketamine in isoflurane-anesthetized dogs. Animals-6 dogs. PROCEDURE: The minimum alveolar concentration (MAC) of isoflurane was determined in each dog. Isoflurane concentration was then set at 0.75 times the individual's MAC, and ketamine (3 mg/kg) was administered IV. Blood samples were collected at various times following ketamine administration. Blood was immediately centrifuged, and the plasma separated and frozen until analyzed. Ketamine and norketamine concentrations were measured in the plasma samples by use of liquid chromatography-mass spectrometry. Ketamine concentration-time data were fitted to compartment models. Norketamine concentration-time data were examined by use of noncompartmental analysis. RESULTS: The MAC of isoflurane was 1.43 +/- 0.18% (mean +/- SD). A 2-compartment model best described the disposition of ketamine. The apparent volume of distribution of the central compartment, the apparent volume of distribution at steady state, and the clearance were 371.3 +/- 162 mL/kg, 4,060.3 +/- 2,405.7 mL/kg, and 58.2 +/- 17.3 mL/min/kg, respectively. Norketamine rapidly appeared in plasma following ketamine administration and had a terminal half-life of 63.6 +/- 23.9 minutes. A large variability in plasma concentrations, and therefore pharmacokinetic parameters, was observed among dogs for ketamine and norketamine. CONCLUSIONS AND CLINICAL RELEVANCE: In isofluraneanesthetized dogs, a high variability in the disposition of ketamine appears to exist among individuals. The disposition of ketamine may be difficult to predict in clinical patients.  相似文献   

7.
8.
The effects of intravenous administration of variable-dose midazolam and ketamine (3 mg/kg) were studied in twelve healthy unmedicated cats from time of administration until full recovery. A range of midazolam doses (0.0, 0.05, 0.5, 1.0, 2.0 and 5.0 mg/kg) was chosen, so that beneficial and/or detrimental effects could be documented and the therapeutic window for further study determined. One minute after administration of ketamine, all cats had assumed a lateral position, mostly with head up. Muscle tone was increased (100%), apneustic breathing pattern evident in 92% of cats, chewing without stimulation of the oropharyngeal area was observed in most cats (97%), but most cats did not salivate (87%). At 2.5 min after completion of ketamine injection and 1 min after administration of saline, a similar picture was observed, except that salivation was evident. All cats chewed or swallowed in response to a finger or laryngoscope placed in the oropharyngeal area and, while most cats were not aware of a noxious stimulus to the tail, some cats were aware of a noxious stimulus to the paw. Recovery from ketamine alone was rapid and smooth with cats rolling into sternal recumbency and then cautiously walking with ataxia. Recovery to walking without incoordination was also rapid (< 2 h) and no abnormal behavioural patterns were observed during recovery. Administration of midazolam after ketamine, had beneficial effects and the therapeutic window for midazolam was found to lie between 0.05 mg/kg and 0.5 mg/kg. Administration of any dose of midazolam after ketamine caused a greater proportion of cats to assume a laterally recumbent position with head down compared with ketamine alone, however, the time period of recumbency was only significantly longer with a midazolam dose of 2.0 mg/kg or above. Doses of midazolam of 0.5 mg/kg or above decreased muscle rigidity but did not affect salivation or respiratory pattern observed in cats which received ketamine alone. A significantly greater proportion of cats which received ketamine and midazolam 0.5 mg/kg or above did not swallow in response to a finger or a laryngoscope placed in the mouth compared with that which received ketamine alone. The length of time in which cats did not swallow was only significantly longer at midazolam doses of 1.0 mg/kg and above. At midazolam doses of 0.5 mg/kg or above, the proportion of cats without a nociceptive response to a tail or paw clamp was significantly greater than cats which received ketamine alone. The time period without nociceptive response, however, was not influenced by midazolam administration. The time taken for cats which received ketamine and midazolam 0.05 mg/kg or 0.5 mg/kg to assume sternal position, walk with ataxia, walk without ataxia, behave normally when approached or restrained and recover normal arousal state was not significantly different from cats which received ketamine alone. Ketamine and midazolam 5.0 mg/kg significantly prolonged all recovery times compared with ketamine alone. Unfortunately, a greater proportion of cats which received ketamine and midazolam 0.5 or 5.0 mg/kg exhibited detrimental behavioural effects. These were more likely to be adverse and included restlessness, vocalization and difficulty approaching and restraining cats. In this study, an  相似文献   

9.
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively.  相似文献   

10.
11.
OBJECTIVE: To determine the effect of 6 plasma ketamine concentrations on the minimum alveolar concentration (MAC) of isoflurane in dogs. ANIMALS: 6 dogs. PROCEDURE: In experiment 1, the MAC of isoflurane was measured in each dog and the pharmacokinetics of ketamine were determined in isoflurane-anesthetized dogs after IV administration of a bolus (3 mg/kg) of ketamine. In experiment 2, the same dogs were anesthetized with isoflurane in oxygen. A target-controlled IV infusion device was used to administer ketamine and to achieve plasma ketamine concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL by use of parameters obtained from experiment 1. The MAC of isoflurane was determined at each plasma ketamine concentration, and blood samples were collected for ketamine and norketamine concentration determination. RESULTS: Actual mean +/- SD plasma ketamine concentrations were 1.07 +/- 0.42 microg/mL, 1.62 +/- 0.98 microg/mL, 3.32 +/- 0.59 microg/mL, 4.92 +/- 2.64 microg/mL, 13.03 +/- 10.49 microg/mL, and 22.80 +/- 25.56 microg/mL for target plasma concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL, respectively. At these plasma concentrations, isoflurane MAC was reduced by 10.89% to 39.48%, 26.77% to 43.74%, 25.24% to 84.89%, 44.34% to 78.16%, 69.62% to 92.31%, and 71.97% to 95.42%, respectively. The reduction in isoflurane MAC was significant, and the response had a linear and quadratic component. Salivation, regurgitation, mydriasis, increased body temperature, and spontaneous movements were some of the adverse effects associated with the high plasma ketamine concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine appears to have a potential role for balanced anesthesia in dogs.  相似文献   

12.
The effects of intravenous administration of variable-dose flumazenil (0, 0.001, 0.005, 0.01, and 0.1 mg/kg) after ketamine (3 mg/kg) and midazolam (0.0 and 0.5 mg/kg) were studied in 18 healthy unmedicated cats from time of administration until full recovery. End-points were chosen to determine whether flumazenil shortened the recovery period and/or modified behaviors previously identified and attributed to midazolam. Overall, flumazenil administration had little effect on recovery or behaviors. One minute after flumazenil administration, all cats were recumbent but a greater proportion of cats which received the highest dose assumed sternal recumbency with head up than any other group. Although not significant, those cats that received the highest flumazenil dose also had shorter mean times for each of the initial recovery stages (lateral recumbency with head up, sternal recumbency with head up and walking with ataxia) than any of the other treatment groups that received midazolam. For complete recovery, flumazenil did decrease the proportion of the cats that was sedated, but did not shorten the time to walking without ataxia. Based on this study, the administration of flumazenil in veterinary practice, at the doses studied, to shorten and/or improve the recovery from ketamine and midazolam in healthy cats cannot be recommended.  相似文献   

13.
The pharmacokinetic disposition and bioavailability of florfenicol (FF) were determined after single intravenous (i.v.) and intramuscular (i.m.) administrations of 25 mg/kg b.w. to ten healthy New Zealand White rabbits. Plasma FF concentrations were determined by high-performance liquid chromatography (HPLC). The plasma pharmacokinetic values for FF were best described by a one-compartment open model. The elimination half-life (t1/2β) was different (p < 0.05) however, the area under curve (AUC) was similar (p > 0.05) after i.v. and i.m. administrations. FF was rapidly eliminated (t1/2β 1.49 ± 0.23 h), slowly absorbed and high (F, 88.75 ± 0.22%) after i.m. injection. In addition, FF was widely distributed to the body tissues (Vss 0.98 ± 0.05 L/kg) after i.v. injection. In this study the time that plasma concentration exceeded the concentration of 2 μg/mL was approximately 6 h. For bacteria with MIC of 2 μg/mL, frequent administration at this dose would be needed to maintain the concentration above the MIC. However, it is possible that rabbit pathogens may have MIC values less than 2 μg/mL which would allow for less frequent administration. Further studies are necessary to identify the range of MIC values for rabbit pathogens and to identify the most appropriate PK-PD parameter needed to predict an effective dose.  相似文献   

14.
The pharmacokinetics of danofloxacin was studied following intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administration of 6 mg/kg to healthy rabbits. Danofloxacin concentration were determined by high-performance liquid chromatography assay with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of danofloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The danofloxacin plasma concentration versus time data after i.v. administration could best be described by a two-compartment open model. The disposition of i.m. and subcutaneously administered danofloxacin was best described by a one-compartment model. The terminal half-life for i.v., i.m. and s.c. routes was 4.88, 6.70 and 8.20 h, respectively. Clearance value after i.v. dosing was 0.76 L/kg.h. After i.m. administration, the absolute bioavailability was mean (+/-SD) 102.34 +/- 5.17% and the Cmax was 1.87 mg/L. After s.c. administration, the absolute bioavailability was mean (+/-SD) 96.44 +/- 5.95% and the Cmax was 1.79 mg/L. Danofloxacin shows a favourable pharmacokinetics profile in rabbits reflected by parameters such as a long half-life and a high bioavailability. However, in consideration of the low AUC/MIC indices obtained, its use by i.m. and s.c. route against the S. aureus strains assayed in this study cannot be recommended given the risk for selection of first mutant subpopulations.  相似文献   

15.
The single-dose disposition kinetics of orbifloxacin were determined in clinically normal rabbits (n=6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg bodyweight. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of orbifloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The concentration-time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution (V(ss)) and total body clearance (Cl) of orbifloxacin after i.v. administration were estimated to be 1.71+/-0.38 L/kg and 0.91+/-0.20 L/h x kg, respectively. Following s.c. and i.m. administration orbifloxacin achieved maximum plasma concentrations of 2.95+/-0.82 and 3.24+/-1.33 mg/L at 0.67+/-0.20 and 0.65+/-0.12 h, respectively. The absolute bio-availabilities after s.c. and i.m. routes were 110.67+/-11.02% and 109.87+/-8.36%, respectively. Orbifloxacin showed a favourable pharmacokinetic profile in rabbits. However, on account of the low AUC/MIC and C(max)/MIC indices obtained, its use by i.m. and s.c. routes against the S. aureus strains assayed in this study cannot be recommended given the risk of selection of resistant populations.  相似文献   

16.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

17.
The pharmacokinetics of moxifloxacin was studied following intravenous (i.v.), intramuscular (i.m.) and oral dose of 5 mg/kg to healthy white New Zealand rabbits (n = 6). Moxifloxacin concentrations were determined by HPLC assay with fluorescence detection. The moxifloxacin plasma concentration vs. time data after i.v. administration could best be described by a two-compartment open model. The disposition of i.m. and orally administered moxifloxacin was best described by a one-compartment model. The plasma moxifloxacin clearance (Cl) for the i.v route was (mean +/- SD) 0.80 +/- 0.02 L/h.kg. The steady-state volume of distribution (Vss) was 1.95 +/- 0.18 L/kg. The terminal half-life (t(1/2lambdaz)) was (mean +/- SD) 1.84 +/- 0.12, 2.09 +/- 0.05 and 2.15 +/- 0.07 h after i.v., i.m. and oral, respectively. Minimal inhibitory concentration (MIC) assays of moxifloxacin against different strains of S. aureus were performed in order to compute pharmacodynamic surrogate markers. From these data, it is concluded that a 5 mg/kg dose moxifloxacin would be effective by i.m. and oral routes in rabbits against bacterial isolates with MIC < or = 0.06 microg/mL and possibly for MIC < or = 0.12 microg/mL, but in the latter case a higher dose would be required.  相似文献   

18.
ObjectiveTo describe the pharmacokinetics of ketamine following a short intravenous (IV) infusion to isoflurane-anesthetized rabbits.Study designProspective experimental study.AnimalsA total of six adult healthy female New Zealand White rabbits.MethodsAnesthesia was induced with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the isoflurane concentration was reduced to 0.75 MAC and ketamine hydrochloride (5 mg kg–1) was administered IV over 5 minutes. Blood samples were collected before and at 2, 5, 6, 7, 8, 9, 13, 17, 21, 35, 65, 125, 215 and 305 minutes after initiating the ketamine infusion. Samples were processed immediately and the plasma separated and stored at –80 °C until analyzed for ketamine and norketamine concentrations using liquid chromatography–mass spectrometry. Compartment models were fitted to the concentration–time data for ketamine and for ketamine plus norketamine using nonlinear mixed-effects (population) modeling.ResultsA three- and five-compartment model best fitted the plasma concentration–time data for ketamine and for ketamine plus norketamine, respectively. For the ketamine only model, the volume of distribution at steady state (Vss) was 3217 mL kg–1, metabolic clearance was 88 mL minute–1 kg–1 and the terminal half-life was 59 minutes. For the model including both ketamine and norketamine, Vss were 3224 and 2073 mL kg–1, total metabolic clearance was 107 and 52 mL minute–1 kg–1 and terminal half-lives were 52 and 55 minutes for the parent drug and its metabolite, respectively.Conclusions and clinical relevanceThis study characterized the pharmacokinetics of ketamine and norketamine in isoflurane-anesthetized New Zealand White rabbits following short IV infusion. The results obtained herein will be useful to determine ketamine infusion regimens in isoflurane-anesthetized rabbits.  相似文献   

19.
OBJECTIVE: To evaluate the contribution of first-pass hepatic metabolism of levamisole on levamisole disposition in rabbits. ANIMALS: 30 male New Zealand White rabbits. PROCEDURES: Rabbits were randomly placed into 2 groups. Rabbits in the first group received levamisole via the marginal ear vein at the following 3 doses: 12.5, 16, and 20 mg/kg (5 rabbits for each dose). Rabbits of the second group received levamisole via the jejunal vein at the same doses (5 rabbits each). During the following 240-minute period, plasma samples were obtained and quantified for levamisole concentrations by reversed-phase high-performance liquid chromatography. RESULTS: No significant differences were found between pharmacokinetic parameters calculated by compartmental or noncompartmental analysis. Mean hepatic extraction ratio ranged from -0.044 to 0.017 and from 0.020 to 0.081 when area under the plasma concentration-time curve values were obtained after compartmental or noncompartmental analysis, respectively. After compartmental analysis, plasma concentration decreased bi-exponentially. Mean pharmacokinetic parameter values were as follows for each dose (12.5, 16, and 20 mg/kg, respectively): after levamisole administration via the marginal ear vein, volume of distribution at steady state (Vss) = 4.26, 4.33, and 3.20 L/kg; total body clearance (CI) = 49.04, 43.77, and 39.26 mL/kg x min; and half-life associated with beta-phase (t1/2beta) = 77.93, 85.39, and 69.79 minutes. After levamisole administration via the jejunal vein, Vss = 4.38, 2.85, and 2.97 L/kg; CI = 48.14, 42.40, and 39.69 mL/kg x min; and t1/2b = 101.9, 76.71, and 76.13 minutes. CONCLUSIONS: Levamisole has a low degree of hepatic extraction in rabbits.  相似文献   

20.
The single-dose disposition kinetics of orbifloxacin were determined in clinically normal rabbits ( n  = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg bodyweight. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Minimal inhibitory concentrations ( MIC s) assay of orbifloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The concentration–time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution ( V ss) and total body clearance ( Cl ) of orbifloxacin after i.v. administration were estimated to be 1.71 ± 0.38 L/kg and 0.91 ± 0.20 L/h·kg, respectively. Following s.c. and i.m. administration orbifloxacin achieved maximum plasma concentrations of 2.95 ± 0.82 and 3.24 ± 1.33 mg/L at 0.67 ± 0.20 and 0.65 ± 0.12 h, respectively. The absolute bio-availabilities after s.c. and i.m. routes were 110.67 ± 11.02% and 109.87 ± 8.36%, respectively. Orbifloxacin showed a favourable pharmacokinetic profile in rabbits. However, on account of the low AUC / MIC and C max/ MIC indices obtained, its use by i.m. and s.c. routes against the S. aureus strains assayed in this study cannot be recommended given the risk of selection of resistant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号