首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究不同种类外源激素对糜子成穗及产量的影响。用5种外源激素在糜子3~4叶期喷施,连续处理2次,喷清水为对照。记录糜子苗期基本苗数、拔节期总茎数、成熟期穗数等性状,用统计软件SPSS 17.0进行统计分析。结果表明,施用脱落酸(ABA)能够显著降低糜子的分蘖数,施用赤霉素(GA3)、吲哚乙酸(IAA)、矮壮素(CCC)也能减少糜子分蘖数,但是与对照差异不显著,施用多效唑(PP333)对糜子分蘖数没有明显影响;施用GA3、IAA、CCC能够增加分蘖穗数,而ABA、PP333降低分蘖穗数;各处理分蘖成穗率都较对照高,ABA处理分蘖成穗率为最高达到25.20%;ABA处理主茎穗占比较对照增加,分蘖穗占比降低;GA3、IAA、CCC处理主茎穗占比相对于对照降低,分蘖穗占比增加,PP333处理与对照相近;5种外源激素对糜子产量的影响差异显著,施用ABA产量最高,可能与主茎穗占比高和分蘖成穗率高有关系。在糜子3~4叶期喷施5种外源激素,对糜子有显著作用的是ABA,主要表现在ABA能够降低糜子分蘖数,保证了主茎的成穗数量,增加了分蘖成穗率,从而提高了糜子产量。  相似文献   

2.
M. Dujardin  W. W. Hanna 《Euphytica》1988,38(3):229-235
Summary An interspecific hybridization program designed to transfer gene(s) controlling apomixis from Pennisetum squamulatum Fresen. (2n=6x=54) to induced tetraploid (2n=4x=28) cultivated pearl millet, Pennisetum americanum (L.) Leeke resulted in four offtype plants, two with 27 chromosomes and two with 28 chromosomes. These plants were found among 217 spaced plants established from open-pollinated seed of an apomictic 21-chromosome polyhaploid (2n=21) plant derived from an apomictic interspecific hybrid (2n=41) between tetraploid pearl millet and Pennisetum squamulatum. It appeared that a 21- (or 20-) chromosome unreduced egg from the apomictic polyhaploid united with a 7-chromosome pearl millet (2n=2x=14) gamete to produce a 28- (or 27-) chromosome offspring. Meiotic chromosome behavior was irregular averaging from 3.60 to 4.05 bivalents per microsporocyte in the 27- and 28-chromosome hybrids. The 27- or 28-chromosome hybrids, like the 21-chromosome female parent, shed no pollen, but set from 1.8 to 28 seed per panicle when allowed to outcross with pearl millet. Progeny of the 28-chromosome hybrids were uniform and identical to their respective female parents, indicating that apomixis had been effectively transferred through the egg. In addition, a 56-chromosome plant resulting from chromosome doubling of a 28-chromosome hybrid was identified. Pollen was 68 per cent stainable and the plant averaged 2.3 selfed seeds per panicle. Chromosomes of the 56-chromosome plant paired as bivalents (x=10.67) or associated in multivalents. Three to nine chromosomes remained unpaired at metaphase I. Multiple four-nucleate embryo sacs indicated the 56-chromosome hybrid was an obligate apomict. The production of 27-, 28-, and 56-chromosome hybrid derivatives were the results of interspecific hybridization, haploidization, fertilization of unreduced apomictic eggs, and spontaneous chromosome doubling. These mechanisms resulted in new unique genome combinations between x=7 and x=9 Pennisetum species.  相似文献   

3.
A 2-year study was conducted to determine the effects of tillage and cropping systems on soil moisture balance, growth and yield of pearl millet (Pennisetum glaucum (L.) R.Br.). Three tillage treatments, viz. minimum tillage (one harrowing), conventional tillage (two harrowing, cross) and deep tillage (ploughing followed by two har-rowings), and four cropping systems, viz. monoculture of pearl millet, pearl miliet-clusterbean (Cyamopsis tetra-gonoloba (L.) Taub.) rotation, monoculture of pearl millet with 5 t ha−1 farm yard manure (FYM), and intercropping of pearl millet and clusterbean, were compared. Deep tillage improved the soil moisture storage, water use efficiency and grain yield of pearl millet while consumptive use of water was higher with minimum tillage. Total dry matter yield with deep tillage and conventional tillage was 23.2 and 10.2% higher than minimum tillage in the season 1, and the corresponding values for season 2 were 30.7 and 13.3%. The Pearl millct-clusterbean rotation and monoculture of pearl millet with the application of 5 t ha−1 FYM gave 17.2 and 6.1% higher yield than monoculture of pearl millet, respectively. Maximum water use efficiency was observed in rotation followed by FYM application.  相似文献   

4.
L. Marchais  S. Tostain 《Euphytica》1997,93(1):97-105
Crosses between pearl millet lines and Pennisetum ramosum, P. schweinfurthii, P. squamulatum or Cenchrus ciliaris were observed for the frequency and development of zygotes, the possibility of embryo rescue, and the fertility of F1 hybrids obtained. Eight per cent of the ovules from diploid millet × P. ramosum crosses showed small embryos which could not be rescued. However, 59% of the ovules from tetraploid millet × P. ramosum crosses showed well-developed embryos that were easy to rescue 14 days after pollination. F1 hybrids were male sterile but female fertile when pollinated by diploid millet. Both diploid and tetraploid millet ovules showed the presence of hybrid zygotes after pollination with P. schweinfurthii at rates ranging from 25% to 45%. The diploid millet× P. schweinfurthii hybrid zygotes often developed almost normal seeds giving, without embryo rescue, totally sterile plants. The tetraploid millet × P. schweinfurthii hybrid embryos were normal but the endosperm was severely defective. A hybrid obtained by embryo rescue was totally sterile. A diploid millet-P. schweinfurthii amphidiploid was obtained by somatic embryogenesis associated with colchicine treatment during callogenesis. This amphiploid plant was male sterile, but gave many seeds when pollinated by a tetraploid millet and few seeds when pollinated by a diploid millet. P. squamulatum pollinating diploid millets produced proembryos with large undifferentiated endosperms in 73% of the ovules. A normal seed set was observed on tetraploid millets pollinated by P. squamulatum and the resulting F1 hybrids were partially male and female fertile. Backcrosses of these hybrids were much more fertile when pollination was from a tetraploid millet rather than from a diploid millet. C. ciliaris pollinating a diploid millet showed, in 60% of the ovules, proembryos and endosperms similar to those observed with P. squamulatum and no hybrid could be rescued. Crosses with a tetraploid millet could not be attempted due to the pistil-pollen incompatibility of tetraploid millets available with C. ciliaris. Ploidy levels of mating partners do not seem to influence pistil-pollen compatibility, but play a major role in post-zygotic abortion. With adequate ploidy levels of parents, and embryo rescue, it seems that the pearl millet gene pool can be considerably enlarged by germplasm from many other species.  相似文献   

5.
Dryland sustainable agriculture in the arid zone of India depends upon the choice of suitable cultivars for pure and mixed crop stands. Field experiments were conducted for two years to examine the response of two contrasting cultivars each of pearl millet (Pennisetum glaucum) and clusterbean (Cyamopsis tetragonoloba) in pure stands and in mixed pearl millet‐clusterbean stands. The differential response of cultivars of both crops to pure and mixed stands resulted in a significant genotype × cropping system interaction. Reduction in seed yield of both clusterbean cultivars was greater in mixed stands with tall and long duration pearl millet MH 179 than with medium statured and early maturing HHB 67. The degree of reduction was greater in Naveen, the branched clusterbean cultivar, than in RGC 197, the single stemmed cultivar. Mixing of pearl millet HHB 67 with medium duration clusterbean cultivar Naveen produced maximum pearl millet equivalent total yield. Higher land equivalent ratios (LERs) were also observed when clusterbean cultivars were mixed with early maturing and short statured pearl millet HHB 67.  相似文献   

6.
Pearl millet is an efficient alternative to maize as a pollen source for haploid production in bread wheat. To compare haploid production frequencies in other Triticeae species, the crossabilities of two genotypes each of bread wheat, durum wheat and hexaploid triticale with four pearl millet genotypes and a maize control were examined. Embryos were obtained from crosses of all three species with both pearl millet and maize. However, significant differences in crossability were found among the three species (10.5–79.8% seed development and 1.4–15.8% embryo formation), as well as among genotypes of durum wheat (7.2–23.7% and 2.1–6.4%) and hexaploid triticale (0.3–20.6% and 0.1–2.7%). Crossability of bread wheat with pearl millet was relatively high. Haploid plants were regenerated from crosses of all three species with pearl millet. As in the case of maize crosses, low crossabilities of durum wheat and hexaploid triticale with pearl millet can be attributed to the absence of D-genome chromosomes.  相似文献   

7.
In field and greenhouse experiments Ethrel (2-chloroethyl phosphonic acid) was tested for its male garnetocidal effects on pearl millet (Pennisetum americanum) and its subsequent effects on ergot development. Application of Ethrel at 2000 ppm at late boot or early protogyny was the most effective for inducing male sterility in the hybrid, EJ 104. Female fertility in a male sterile line, however, was not affected by Ethrel treatment. Ethrel at 2030 ppm applied at ihe late boot stage resulted1 in partial paniele exsertion, and reduced plant height anc. panide length. In vitro Ethrel (2000 ppm) completely inhibned pollen germination but did not affect germination of conidia of Claviceps fusiformis, the causal agent of ergot of pearl millet. Ergot resistance or susceptibility in pearl millet lines was not affected., probably because Ethrel could not induce complete male sterility.  相似文献   

8.
以苏州碧螺春茶为试材,设计了16种不同保鲜剂,经过一定条件贮藏后,观察其对碧螺春茶的保鲜效果.结果表明,处理9(硅胶和抗坏血酸钠系列)与处理11(焦亚硫酸钠和抗坏血酸钠系列)保鲜效果最好,处理1(铁粉和氯化钠系列)、处理6(铁粉、氯化亚铁、碳酸氢钠、反丁烯二酸和沸石系列)、处理12(细孔硅胶)、处理14(活性干燥剂)保鲜效果较好.并对感观品质各特点与生化成分含量的相关性做了分析研究.  相似文献   

9.
A set of 22 pearl millet inbred lines including the parents of eleven mapping populations, was screened with 627 markers including 100 pearl millet genomic SSRs (gSSRs), 60 pearl millet EST-SSRs (eSSRs), 410 intron sequence haplotypes (ISHs), and 57 exon sequence haplotypes (ESHs). In all, 267 (59%) of the markers were informative for at least one of the 11 mapping populations, which segregate for traits like drought and salinity tolerance; host plant resistance to downy mildew, rust and blast; fertility restoration and sterility and maintenance of cytoplasmic male sterility etc. An average of 116 polymorphic markers was identified per mapping population. The average PIC values and number of profiles (P) per polymorphic marker were: gSSRs (PIC = 0.62, P = 6.1), ISHs (PIC = 0.39, P = 2.6), eSSRs (PIC = 0.36, P = 3.1) and ESHs (PIC = 0.35, P = 3.1). A high correlation (r > 0.97, P < 0.05) was observed between the patterns of diversity exposed by the different marker systems. The polymorphic markers identified are suitable for the de novo construction, or the supplementation of pearl millet linkage maps. The genetic relationships identified among the panel of inbred lines may be useful in designing strategies to improve the use of available genetic variation in the context of pearl millet breeding.  相似文献   

10.
The aim of this work was to analyse the influence of the male parent on the production of embryos and haploid plants in durum wheat crossed with maize and pearl millet, to find a proper trait to identify the most efficient pollinators and to evaluate the mixtures of pollen. Two genotypes of durum wheat, low and high responding, were crossed with eight pollen samples: (i) three maize hybrids, (ii) three pearl millet inbred lines, (iii) a mixture of maize pollen and (iv) another mixture of pearl millet pollen. No significant differences on embryos and haploid plant production were observed among the four samples of maize pollen, but there were clear genotypic differences for the production of haploids between genotypes of pearl millet. The best pearl millet genotype produced significantly more haploid plants than the other two and the mixture of pollen. There was no correlation between the production of embryos and haploid plants. Therefore, the production of haploid plants must be the criterion to identify superior pollinators. In addition, a mixture of pollen is inappropriate except when using genotypes previously identified as good pollinators.  相似文献   

11.
P. J. Lynch 《Plant Breeding》1994,113(3):237-241
Inadequate stand establishment can be a major constraint to high grain and fodder yields of pearl millet (Pennisetum glaucum [L.] R. Br.) in the semi-arid tropics. In this study, two laboratory screening procedures designed to improve components of stand establishment were evaluated. In the first procedure the ability of seedlings to emerge from the soil at 45 °C was tested and in the second procedure the ability of seeds to germinate at 45°C was measured. Two cycles of recurrent selection were conducted with each procedure in the Higrop and Senpop pearl millet gene pools. The resultant populations were evaluated to measure the efficacy of the screening procedures. Selection for increased emergence was effective in the Cc of Higrop. When emergence percentage was averaged across Higrop and Senpop, recurrent selection increased emergence percentage by 7.4 % per cycle. In future, the size of the emergence screening units and number of seeds screened per progeny tested should be increased. The germination selection procedure was ineffective.  相似文献   

12.
Flash floods, erratically striking semi-arid regions, often cause field flooding and soil anoxia, resulting in crop losses on food staples, typically pearl millet (Pennisetum glaucum L.) and sorghum (Sorghum bicolor (L.) Moench). Recent glasshouse studies have indicated that rice (Oryza spp.) can enhance flood stress tolerance of co-growing dryland cereals by modifying their rhizosphere microenvironments via the oxygen released from its roots into the aqueous rhizosphere. We tested whether this phenomenon would be expressed under field flood conditions. The effects of mix-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015–2015/2016. Single-stand and mixed plant treatments were subjected to 11–22 day flood stress at the vegetative growth stage. Mixed planting increased plant survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet–rice and sorghum–rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet and sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding.  相似文献   

13.
M.N. Inagaki  A. Mujeeb-Kazi 《Euphytica》1998,100(1-3):253-259
The effects of drying and freezing on viability of pearl millet pollen were examined with the aim of using stored pollen in polyhaploid production of hexaploid wheat. Freshly collected pollen of pearl millet line NEC 7006 with 55% water content, germinated at a frequency of 80%. Pollen that was dried for two hours to 6% water content showed 50% germination frequency and maintained similar frequencies after the freezing process. In crosses of hexaploid wheat variety Norin 61 with fresh pearl millet pollen, embryos were obtained at a frequency of 27.6%. In crosses with pollen stored at -196 °C, -80 °C and -20 °C for one month, embryo formation frequencies ranged from 27.5 to 17.4%. After five and twelve months of storage, the frequencies ranged from 29.7 to 14.6% at storage temperatures of -196 °C and -80 °C, and from 8.0 to 3.2% at -20 °C, indicating significant differences among storage temperatures. However, no significant frequency difference was found among pollen water contents at the time of collection. All plants regenerated from crosses with pearl millet pollen stored for five months were wheat polyhaploids. These results suggest that stored pearl millet pollen is an efficient medium for producing polyhaploids in hexaploid wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Effects of climate variability and change on yields of pearl millet have frequently been evaluated but yield responses to combined changes in crop management and climate are not well understood. The objectives of this study were to determine the combined effects of nutrient fertilization management and climatic variability on yield of pearl millet in the Republic of Niger. Considered fertilization treatments refer to (i) no fertilization and the use of (ii) crop residues, (iii) mineral fertilizer and (iv) a combination of both. A crop simulation model (DSSAT 4.5) was evaluated by using data from field experiments reported in the literature and applied to estimate pearl millet yields for two historical periods and under projected climate change. Combination of crop residues and mineral fertilizer resulted in higher pearl millet yields compared to sole application of crop residues or fertilizer. Pearl millet yields showed a strong response to mean temperature under all fertilization practices except the combined treatment in which yields showed higher correlation to precipitation. The crop model reproduced reported yields well including the detected sensitivity of crop yields to mean temperature, but underestimated the response of yields to precipitation for the treatments in which crop residues were applied. The crop model simulated yield declines due to projected climate change by −11 to −62% depending on the scenario and time period. Future crop yields in the combined crop residues + fertilizer treatment were still larger than crop yields in the control treatment with baseline climate, underlining the importance of crop management for climate change adaptation. We conclude that nutrient fertilization and other crop yield limiting factors need to be considered when analyzing and assessing the impact of climate variability and change on crop yields.  相似文献   

15.
Blast disease causes serious economic yield losses in pearl millet. Identification and introgression of genomic regions associated with blast resistance can help to develop resistant cultivars to minimize yield losses incurred from blast outbreaks. In this study, 384 advanced pearl millet genotypes were screened against six blast pathotype-isolates (major pearl millet growing agro-ecologies of India), namely, Pg 45, Pg 118, Pg 138, Pg 186, Pg 204 and Pg 232. Analysis of variance showed significant (P < .001) variation among genotypes for blast reaction (susceptible to resistance). ICMR 08111 and ICMR 10888 genotypes showed resistance to all six blast pathotypes. A genome-wide association study performed with 264,241 single nucleotide polymorphic markers could successfully identify 15 SNPs (P = 1.26 × 10−7 to 9.22 × 10−12) underlying the genomic regions governing blast-resistance across five different chromosomes. The SNPs reported had a significant association in at least two of the three models tested (GLM, MLM and Farm CPU). These SNPs can be used in pearl millet-resistant breeding programmes after their function has been validated across different genetic backgrounds.  相似文献   

16.
In the Sahel, pearl millet yields are affected by the proportion of hybrid phenotype plants resulting from genetic mixing between domesticated and wild forms. Man counteracts this mixing by applying a production method, the efficiency of which is quantified in this study. Under experimental conditions, cultivated and wild pearl millet were hybridised in order to obtain cultivated pearl millet seeds including a known proportion of F1 hybrids tagged by two different allozymes. These seeds were sown in the field and the cultivation was conducted following practices common in the Sahel. The evolution of the survival rate of plants and the frequency of hybrids were followed over several stages during the season: sowing, germinating, emergence, thinning, flowering and maturing of the seeds. Owing to plant mortality in the experiment, the average tendency was a hybrid frequency that decreased steadily in the first part of the growing season from 42% during germination, to 37% at emergence. It then fell to 17% after the thinning of the plantlets by the farmer. At the end of the cycle, after thinning, only 11% of mature plants were hybrids. Thus, under the combined pressures of natural and human selection, the frequency of hybrids in the field declined drastically. In interaction with natural pressure, the farmer's practices of selection of seeds, sowing in pockets and thinning have the combined effect of heavily selecting the cultivated genotype and limiting without completely preventing the introgression of wild pearl millet genes into the cultivated genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The study relates village seed systems to biological diversity of millet crops grown by farmers in the semi-arid lands of Andhra Pradesh and Karnataka, India. In these subsistence-oriented, semi-arid production systems the environment is marginal for crop growth and often there is no substitute for millet crops. Across communities, farmers grow 13 different combinations of pearl millet, sorghum, finger millet, little millet, and foxtail millet varieties, but individual farmers grow an average of only 2–3 millet varieties per season. The “village seed system” in this study refers to all channels through which farmers acquire genetic materials, separate from or in interaction with the commercial seed industry, observed at the local level. Data are compiled through household surveys and interviews with traders and dealers in village and district markets. Based on the concept of the seed lot, several seed system parameters are defined and measured by millet crop. Most seed transactions, including gifts of seed, appear to be monetized. Seed supply channels differ by improvement status of the genetic material. Regression results confirm that seed system parameters are statistically significant determinants of the spatial diversity of millet crops measured at the village level. Furthermore, both the trade through weekly village markets (shandies) and through the formal seed supply channel contribute positively to the breadth of genetic materials in these communities. Ways should be found to strengthen and improve the overall efficiency of the seed system, including both formal and informal channels, in order to reduce the costs to farmers of procuring and managing diverse crop varieties.  相似文献   

18.
F. Ahmad  A. Comeau 《Euphytica》1990,50(3):181-190
Summary Eight grain pearl millet (2n=14) accessions were crossed as male to hexaploid spring wheat cv. Fukuho (2n=6x=42). An average of 80% wheat pistils showed pearl millet pollen tube entry in the ovules, compared to 56% in wheat x maize cv. Seneca 60 cross. Of the 15 embryos, obtained through in vitro immature seed culture from wheat x pearl millet crosses, 3 plantlets were produced and grown to maturity. These three were of the somatic chromosome constitution 2n=42, 21 and 22, respectively. Haploid wheat plant (2n=21) apparently originated from pearl millet chromosome elimination during embryogenesis. The 22 chromosome plant had retained a single pearl millet chromosome at tillering stage, but this chromosome was eliminated from pollen mother cells prior to and also during gamete formation. The significance and potential uses of this wide cross is discussed.  相似文献   

19.
K. Hartung  H.-P. Piepho 《Euphytica》2007,153(1-2):15-26
Cytoplasmic male sterility (CMS) is considered an efficient genetic tool in pearl millet hybrid breeding. Of the several CMS sources available in pearl millet, A1 is the only CMS widely exploited to produce commercial hybrids in India. To explore the possibility of using alternate CMS sources, we studied the cytoplasmic effects of different CMS sources on agronomic characters in pearl millet. Five CMS (A) lines representing A1, A2, A3, A4 and A5 cytoplasms, their respective maintainer (B) lines and eight restorer (R) lines were used to generate 40 A × R and B × R experimental crosses. The experimental material was evaluated at two different locations in India. Analysis of combining ability and heterosis revealed that A4 and A5 cytoplasms had desirable effects for earliness. The A5 CMS was found to be particularly promising, as compared to other CMS sources for improving grain yield. The study also indicated that the cytoplasmic effects on general combining ability (GCA) for various agronomic characters were largely non-significant. However, cytoplasmic effects on specific combining ability and heterosis were found to be modulated by cytoplasmic-nuclear interactions and influenced by the environmental conditions. The study also demonstrated the advantage of utilizing diverse male-sterile and restorer combinations in maximizing the productivity as well as for genetic and cytoplasmic diversification of hybrids in pearl millet.  相似文献   

20.
Genetic analysis of sodium and sodium/potassium (Na/K) ratios in leaf and stem was carried out through diallel analysis involving two tolerant, one moderately tolerant, and two sensitive genotypes as parents. Three-week-old seedlings were subjected to a critical level of salinization (17 decisiemens per meter of electrical conductivity). Leaf and stem sampling (from 5 parents and 20 hybrids arranged in a randomized block design with three replications of 10 each) was done 30 days after salinization when susceptible parents were severely effected. Predominance of non-additive gene action for stem sodium and dominance component for leaf Na/K were noticed while both additive and non-additive components played a significant role for stem Na/K. A single group of genes seems to be operative for these characters. Hybrids produced by crossing the two sensitive parents were tolerant suggesting genetic complementation and involvement of different loci in the two parents for salinity tolerance. The overall dominant nature of tolerance and the additive gene action for these salinity related characters suggested the possibility of breeding pearl millet lines through hybridization and selection to pyramid the favorable genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号