首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Angiotensin I converting enzyme (ACE) inhibitory activity was determined in the soy protein isolate (SPI) digest produced by in vitro pepsin-pancreatin sequential digestion. The inhibitory activity was highest within the first 20 min of pepsin digestion and decreased upon subsequent digestion with pancreatin. An IC(50) value of 0.28 +/- 0.04 mg/mL was determined after 180 min of digestion, while no ACE inhibitory activity was measured for the undigested SPI at 0.73 mg/mL. Chromatographic fractionation of the SPI digest resulted in IC(50) values of active fractions ranging from 0.13 +/- 0.03 to 0.93 +/- 0.08 mg/mL. Although many of the fractions showed ACE inhibition, peptides with lower molecular masses and higher hydrophobicities were most active. The findings show that many different peptides with ACE inhibitory activities were produced after in vitro pepsin-pancreatin digestion of SPI and lead to the speculation that physiological gastrointestinal digestion could also yield ACE inhibitory peptides from SPI.  相似文献   

2.
The angiotensin converting enzyme (ACE)-inhibitory activity of several commercial fermented milks was evaluated. Most of these products showed moderate inhibitory activity, but a few exceptions were detected. The high ACE-inhibitory activity found in some cases could be related to the origin of the milk. Two of these products were subjected to an enzymatic hydrolysis process, which simulates physiological digestion, to study the influence of digestion on ACE-inhibitory activity. The activity did not significantly change or increase during simulated gastrointestinal digestion. The peptides generated from one selected product during simulated digestion were sequenced by tandem spectrometry. Most peptides found at the end of the simulated digestion were released after 30 min of incubation with the pancreatic extract. This suggests that physiological digestion promotes the formation of active peptides from the proteins present in these fermented products. The potential ACE-inhibitory activity of the identified peptides is discussed with regard to their amino acid sequences.  相似文献   

3.
ACE inhibitory activity in enzymatic hydrolysates of insect protein   总被引:1,自引:0,他引:1  
In this paper, ACE inhibitory activity in insect protein hydrolyzed by various enzymes (gastrointestinal proteases, alcalase, and thermolysin) is reported for the first time. Four insects of different insect orders were tested: Spodoptera littoralis (Lepidoptera), Bombyx mori (Lepidoptera), Schistocerca gregaria (Orthoptera), and Bombus terrestris (Hymenoptera). ACE inhibitory activity was measured by two different methods: a spectrophotometric method using FAPGG (2-furanacryloyl-phenylalanyl-glycyl-glycine) as substrate, and an HPLC method using dansyltriglycine (DTG) as substrate. Hydrolysis of the insect protein resulted in an increased ACE inhibitory activity. Overall, the highest ACE inhibitory activity was obtained after gastrointestinal digestion. These results suggest a role for insect protein as antihypertensive component in functional foods and nutraceuticals. Furthermore, the ACE inhibitory activity differed according to the method used. As a consequence, there is a need to standardize methodologies to evaluate ACE inhibitory activity.  相似文献   

4.
Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) are antihypertensive tripeptides isolated from milk fermented with Lactobacillus helveticus and inhibit angiotensin-converting enzyme (ACE). We investigated whether these peptides were generated from beta-casein by digestive enzymes and whether they were resistant to enzymatic hydrolysis, using an in vitro model. VPP and IPP were not generated from beta-casein by gastrointestinal enzymes; instead, a number of longer peptides including VPP and IPP sequences were detected. The fermentation step would therefore be necessary to produce these antihypertensive tripeptides. VPP and IPP themselves were hardly digested by digestive enzymes, suggesting that orally administered VPP and IPP remain intact in the intestine, retaining their activity until adsorption. The present study also demonstrated that various functional peptide sequences in beta-casein were resistant to gastrointestinal enzymes. There may be a strong correlation between the resistance of peptides to gastrointestinal digestion and their real physiological effects after oral administration.  相似文献   

5.
Fish protein hydrolysate (FPH) produced by incubation of Pacific hake fillet with 3.00% Protamex at pH 6.5 and 40 degrees C for 125 min demonstrated in vitro ACE-inhibitory activity (IC50 = 165 microg/mL), which was enhanced by ultrafiltration through a 10 kDa molecular weight cutoff membrane (IC50 = 44 microg/mL). However, after simulated gastrointestinal digestion, FPH and ultrafiltrate had similar ACE-inhibitory activity (IC 50 = 90 microg/mL), indicating that FPH peptides act as "pro-drug type" inhibitors and that enrichment by ultrafiltration may be unnecessary. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry confirmed that the molecular weights of major peaks were <1 kDa regardless of ultrafiltration. ACE-inhibitory activities of digested hydrolysates were not significantly affected by preincubation with ACE ( P > 0.05) and exhibited a competitive inhibitory mode. A permeability assay using fully differentiated colorectal adenocarcinoma (Caco-2) cells showed an apical to basolateral transport of peptides that ranged from approximately 2 to 20% after 2 h at 37 degrees C. Pacific hake fillet hydrolysates are a potentially bioavailable source of ACE-inhibitory peptides awaiting further in vivo study.  相似文献   

6.
Protein has been reported to be the most satiating of all macronutrients. Upon gastrointestinal digestion, peptides are generated that stimulate the release of satiety hormones such as cholecystokinin (CCK) from enteroendocrine cells. As such, bioactive peptides could be the target of Functional Food ingredients with satiating effects. We set up an in vitro assay system to investigate if different protein hydrolysates exhibit varying CCK-releasing properties. Soy, pea, potato, casein, and whey protein hydrolysates were incubated with the enteric endocrine cell line STC-1 that endogenously expresses and secretes CCK. Release of CCK was measured by ELISA. All hydrolysates induced CCK release at low concentrations (>0.1 mg.L -1)); however, no significant differences in CCK-releasing properties between the different protein hydrolysates were found, suggesting a generic, nonspecific peptide-sensing mechanism in the STC-1 cells on hydrolyzed protein. As the ELISA exhibits sensitivity to all CCK isoforms possessing the C-terminal CCK octapeptide but varying in biological activity at the CCK 1 receptor (CCK 1R), a secondary module was added to the STC-1 cell assay. Intracellular calcium measurements were performed in CHO-CCK 1R cells. Following exposure of the STC-1 cells to the protein hydrolysates, the medium was tested on the CCK 1R assay. Released CCK was measured with higher sensitivity and lower variability than in the ELISA. Surprisingly, we found that some protein hydrolysates (soy > potato > casein) also directly stimulated CCK 1R-expressing cells, while whey and pea protein hydrolysates were inactive. As CCK 1R is expressed in the GI tract, direct interaction of CCK 1R with dietary peptides may contribute to their satiety effects. Future experiments developing bioactive ingredients for Functional Foods for weight management could involve isolation of the active, CCK 1R-activating peptides in, for example, soy protein hydrolysates.  相似文献   

7.
Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, catalyzes the conversion of Angiotensin I to the potent vasoconstrictor Angiotensin II and plays an important physiological role in regulating blood pressure. Inhibitors of angiotensin 1-converting enzyme derived from food proteins are utilized for pharmaceuticals and physiologically functional foods. ACE inhibitory properties of different enzymatic hydrolysates of glycinin, the major storage protein of soybean, have been demonstrated. The IC50 value for the different enzyme digests ranges from 4.5 to 35 microg of N2. The Protease P hydrolysate contained the most potent suite of ACE inhibitory peptides. The ACE inhibitory activity of the Protease P hydrolysate after fractionation by RP-HPLC and ion-pair chromatography was ascribed to a single peptide. The peptide was homogeneous as evidenced by MALDI-TOF and identified to be a pentapeptide. The sequence was Val-Leu-Ile-Val-Pro. This peptide was synthesized using solid-phase FMOC chemistry. The IC50 for ACE inhibition was 1.69 +/- 0.17 microM. The synthetic peptide was a potent competitive inhibitor of ACE with a Ki of 4.5 +/- 0.25 x 10(-6) M. This peptide was resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods.  相似文献   

8.
A database consisting of 168 dipeptides and 140 tripeptides was constructed from published literature to study the quantitative structure--activity relationships of angiotensin I-converting enzyme (ACE) inhibitory peptides. Two models were computed using partial least squares regression based on the three z-scores of 20 coded amino acids and further validated by cross-validation and permutation tests. The two-component model could explain 73.2% of the Y-variance (inhibitor concentration that reduced enzyme activity by 50%, IC50) with the predictive ability of 71.1% for dipeptides, while the single-component model could explain 47.1% of the Y-variance with the predictive ability of 43.3% for tripeptides. Amino acid residues with bulky side chains as well as hydrophobic side chains were preferred for dipeptides. For tripeptides, the most favorable residues for the carboxyl terminus were aromatic amino acids, while positively charged amino acids were preferred for the middle position, and hydrophobic amino acids were preferred for the amino terminus. According to the models, the IC50 values of seven new peptides with matchable primary sequences within pea protein, bovine milk protein, and soybean were predicted. The predicted peptides were synthesized, and their IC50 values were validated through laboratory determination of inhibition of ACE activity.  相似文献   

9.
Naturally occurring ACE (angiotensin converting enzyme) inhibitory peptides have a potential as antihypertensive components in functional foods or nutraceuticals. These peptides have been discovered in various food sources from plant and animal protein origin. In this paper an overview is presented of the ACE inhibitory peptides obtained by enzymatic hydrolysis of muscle protein of meat, fish, and invertebrates. Some of these peptides do not only show in vitro ACE inhibitory activity but also in vivo antihypertensive activity in spontaneously hypertensive rats. To focus on new sources of ACE inhibitory peptides, more specifically insects and other invertebrates, we compared the vertebrate and invertebrate musculature and analyzed phylogenetic relationships.  相似文献   

10.
The incubation conditions of wheat germ for angiotensin I-converting enzyme inhibitory activity (ACEI) elevation and peptide accumulation were investigated, and five ACE inhibitory peptides were obtained. The effect of individual factors such as incubation time, temperature, initial pH, and liquid to solid ratio on ACEI and peptide concentration of incubation medium was evaluated, respectively. The combinations of four factors were further optimized using a Box-Behnken design. Under the best incubation condition (pH 4.4 with a liquid to solid ratio 8.14 mL/g at temperature 47 °C, for 7 h), maximum ACEI (92.16%) and peptide concentration (88.12 mg/g) were obtained, which were 6.2- and 2.4-fold, respectively, as compared to the unincubated wheat germ. After they were purified, five ACE inhibitory peptides, VEV, W, NPPSV, QV, and AMY, were identified by liquid chromatography/tandem mass spectrometry. The IC(50) were 115.20, 94.87, 40.56, 26.82, and 5.86 μM, respectively.  相似文献   

11.
海洋生物ACE抑制肽研究进展   总被引:1,自引:0,他引:1  
血管紧张素转化酶(ACE)抑制肽是一类通过抑制ACE活性实现降压作用的多肽类物质。天然来源的ACE抑制肽具有安全性高、毒副作用小、可长期服用等优点,目前已经从陆源性植物蛋白、动物蛋白中发现了多种ACE抑制肽。海洋生物是一类重要的新型生物资源,含有大量的蛋白质类物质,通过降解可得到ACE抑制肽。本文运用生物信息学检索方法,对国内外主要海洋生物ACE抑制肽的研究进行了综述,主要从材料来源、降解酶、氨基酸序列以及IC50值4个方面重点介绍海洋鱼、虾、贝、藻等来源的ACE抑制肽,比较了其可能的区别和特征,并对海洋生物ACE抑制肽应用前景进行了展望,旨在为开发和利用海洋生物蛋白,促进海洋生物活性物质的研发提供指导。  相似文献   

12.
Angiotensin-I-converting enzyme (ACE) inhibitory activity was identified in milk proteins fermented with Lactobacillus (Lb.) helveticus NCC 2765 (Nestle Culture Collection, Vers-chez-les-Blanc, Switzerland). Hydrolyzing sodium caseinate for 1 and 2 h inhibited ACE activity, as measured by an in vitro ACE inhibition test. The hydrolysates with the highest ACE inhibitory potential were fractionated by gel permeation chromatography and their low molecular weight fractions collected. These fractions were subsequently subfractionated by reverse-phase high-pressure liquid chromatography. Several hydrophobic subfractions showed high ACE inhibitory potential, and their peptide composition was determined using an ion trap mass spectrometer equipped with an elctrospray ionization source. Analysis of the low molecular weight fraction identified 14 peptides with known antihypertensive activity and 1 with previously described opioid activity. On the basis of the peptide composition of active subfractions, two potentially active novel sequences were defined, and the following synthetic peptides were synthesized: FVAPFPEVFG (alphaS1 39-48), ENLLRFFVAPFPEVFG (alphaS1 33-48), NENLLRFFVAPFPEVFG (alphaS1 32-48), LNENLLRFFVAPFPEVFG (alphaS1 31-48), NLHLPLPLL (beta 147-155), ENLHLPLPLL (beta 146-155), and VENLHLPLPLL (beta 145-155). The ACE inhibitory potential of these synthetic peptides was assessed, and IC50 values were determined. NLHLPLPLL (beta 147-155), which was the only synthetic peptide also present in the sodium caseinate hydrolysates, and NENLLRFFVAPFPEVFG (alphaS1 32-48) showed the highest inhibition of ACE activity, with IC50 values of 15 and 55 microM, respectively. Furthermore, the stability of all synthetic peptides was assessed using an in vitro model simulating gastric digestion. The beta-casein-derived peptides remained intact following the successive hydrolysis by pepsin and pancreatin, whereas alphaS1-casein-derived peptides were degraded by pepsin.  相似文献   

13.
Topoisomerases are targets of several anticancer agents because their inhibition impedes the processes of cell proliferation and differentiation in carcinogenesis. With very limited information available on the inhibitory activities of peptides derived from dietary proteins, the objectives of this study were to employ co-immunoprecipitation to identify inhibitory peptides in soy protein hydrolysates in a single step and to investigate their molecular interactions with topoisomerase II. For this, soy protein isolates were subjected to simulated gastrointestinal digestion with pepsin and pancreatin, and the human topoisomerase II inhibitory peptides were co-immunoprecipitated and identified on a CapLC- Micromass Q-TOF Ultima API system. The inhibitory activity of these peptides from soy isolates toward topoisomerase II was confirmed using three synthetic peptides, FEITPEKNPQ, IETWNPNNKP,and VFDGEL, which have IC 50 values of 2.4, 4.0, and 7.9 mM, respectively. The molecular interactions of these peptides evaluated by molecular docking revealed interaction energies with the topoisomerase II C-terminal domain (CTD) (-186 to -398 kcal/mol) that were smaller than for the ATPase domain (-169 to -357 kcal/mol) and that correlated well with our experimental IC 50 values ( R (2) = 0.99). In conclusion, three peptides released from in vitro gastrointestinal enzyme digestion of soy proteins inhibited human topoisomerase II activity through binding to the active site of the CTD domain.  相似文献   

14.
Angiotensin converting enzyme (ACE) inhibitory peptides prepared from soy protein by the action of alcalase enzyme was tested for its hypotensive effect on spontaneously hypertensive rats (SHR). Captopril, an ACE inhibitor used widely for hypertension treatment, was also applied in comparison. A significant (p < 0.05) decrease in systolic blood pressure of SHR was observed when soy ACE inhibitory peptides were orally administrated at three different dose levels (100, 500, and 1000 mg/kg of body weight/day), whereas little change occurred in the blood pressure of normotensive rats even at the highest dose. After a month-long feeding, blood pressure readings of SHR fell by approximately 38 mmHg from the original level at the lowest dose; a steadily and progressively hypotensive effect existed for these soy ACE inhibitory peptides administration groups. An obvious fluctuation was observed at the third week, although Captopril had a stronger hypotensive effect. The ACE activity of serum, aorta and lung, and lipid content of serum of SHR upon administration of soy ACE inhibitory peptides did not show a significant difference from that of the control group, whereas the serum ACE activity increased and the aorta ACE activity decreased significantly (p < 0.05) for the Captopril group. Serum Na(+) concentration decreased significantly in both the peptides-treated groups and the Captopril-treated group in comparison with the control group, whereas no lowering effect was observed for serum K(+) and serum Ca(2+) concentrations. These results suggested that the hypotensive effect of ACE inhibitory peptides derived from soy protein could be at least partly attributed to the action on salt/water balance.  相似文献   

15.
This study was conducted to investigate the effects of buckwheat ( Fagopyrum esculentum Moench cv. Yangjul No. 2) extract on the antioxidant activity of lipids in mouse brain and the structural change during in vitro human digestion. Buckwheat was collected from a wild farm and extracted with water. The buckwheat extracts were then passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The results confirmed that the main phenolics of buckwheat extract were rutin, quercitrin, and quercetin. The rutin content increased with digestion of the buckwheat (from 48.82 to 96.34 μg/g) and rutin standard samples (from 92.76 to 556.56 μg/g). Antioxidant activity was more strongly influenced by in vitro human digestion of both buckwheat and rutin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased (from 5.06 to 87.82%), whereas the antioxidant activity was not influenced by digestion in the stomach for both buckwheat extract and rutin standard. Inhibition of lipid oxidation of buckwheat in mouse brain lipids increased after digestion in the stomach for both buckwheat extract and the rutin standard. The major finding of this study was that in vitro human digestion may be an important modulator of the antioxidant capacity of buckwheat and that this may be because in vitro human digestion increased the antioxidative activity via an increase in antioxidants such as rutin and quercetin.  相似文献   

16.
A set of in vitro assay conditions were selected for the determination of ACE-inhibitory activity, and the need was demonstrated to standardize this assay so that the results obtained by different authors may be comparable. The conditions selected were as follows: 10 mM HHL concentration in 0.2 M potassium phosphate buffer and 0.3 M NaCl and 26 mU of ACE/mL as reaction medium; incubation time, 80 min at 37 degrees C. The method was applied to the study of ACE-inhibitory activity of dairy product and wine samples. Of the samples assayed, it was infant formulae whey that produces the greatest ACE inhibition. Red wine also presents a high inhibition percentage. This latter sample has an important matrix effect that must be corrected in the calculation. ACE-inhibition type was also studied, using a yogurt whey and a Captropil solution as substrates. The whey produced noncompetitive inhibition and the Captropil competitive inhibition.  相似文献   

17.
Sunflower protein isolates and the proteases pepsin and pancreatin were used for the production of protein hydrolysates that inhibit angiotensin-I converting enzyme (ACE). Hydrolysates obtained after 3 h of incubation with pepsin and 3 h with pancreatin were studied. An ACE inhibitory peptide with the sequence Phe-Val-Asn-Pro-Gln-Ala-Gly-Ser was obtained by G-50 gel filtration chromatography and high-performance liquid chromatography C18 reverse phase chromatography. This peptide corresponds to a fragment of helianthinin, the 11S globulin from sunflower seeds, which is the main storage protein in sunflower. These results show that sunflower seed proteins are a potential source of ACE inhibitory peptides when hydrolyzed with pepsin and pancreatin.  相似文献   

18.
A lung extract rich in angiotensin converting enzyme (ACE) and pure ACE were immobilized by reaction with the activated support 4 BCL glyoxyl-agarose. These immobilized ACE derivatives were used for purification of ACE inhibitory peptides by affinity chromatography. The immobilized lung extract was used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that had been obtained by treatment of protein isolates with alcalase. The ACE binding peptides that were retained by the derivatives were specifically released by treatment with the ACE inhibitor captopril and further purified by reverse-phase C18 HPLC chromatography. Inhibitory peptides with IC50 50 and 150 times lower than those of the original sunflower and rapeseed hydrolysates, respectively, were obtained. The derivative prepared using pure ACE was used for purification of ACE inhibitory peptides from the same type of sunflower protein hydrolysate. ACE binding peptides were released from the ACE-agarose derivatives by treatment with 1 M NaCl and had an IC50 a little higher than those obtained using immobilized extract and elution with captopril. Affinity chromatography facilitated the purification of ACE inhibitory peptides and potentially other bioactive peptides present in food proteins.  相似文献   

19.
A series of peptides, derived from an ACE inhibitory peptide (VTVNPYKWLP) found in our previous work, were synthesized. Their half maximal inhibition concentrations (IC(50)) for ACE inhibition have been determined. The effect of amino acid sequence on ACE inhibition was discussed on the basis of IC(50) of the synthetic peptides, and the following characteristics of the ACE inhibitory peptide have been clarified. First, the active portion of this peptide for ACE inhibition is KW. Second, the amino acid sequences near this dipeptide (KW) have a strong effect on the inhibitory activity. Especially, the proline residue in the C-terminal end strongly enhanced ACE inhibition. It should be noted that the IC(50) value of KWLP (5.5 μM) is the same as the ACE inhibitory peptide (VTVNPYKWLP) and that the IC(50) value of KW is 7.8 μM. The stability and absorption efficiency in vivo would be significantly improved by shortening the peptide length from 10 amino acids to four amino acids or two amino acids.  相似文献   

20.
The scope of this study was to determine the ability of flaxseed (Linum usitatissimum L.) proteins to release angiotensin I-converting enzyme inhibitory (ACEI) peptides during simulated gastrointestinal (GI) digestion using a static (SM; no absorption in the intestinal phase) and a dynamic model (DM; simultaneous absorption of digested products in the intestinal phase via passive diffusion). Gastric and gastric + small intestinal digests of flaxseed proteins of both models possessed ACEI activity. The ACEI activity of the gastric + small intestinal digest in the DM (IC(50) unabsorbed, 0.05 mg N/mL; IC(50) absorbed, 0.04 mg N/mL) was significantly higher (p < 0.05) than that of the SM (IC(50), 0.39 mg N/mL). Two peptides, a pentapeptide (Trp-Asn-Ile/Leu-Asn-Ala) and a hexapeptide (Asn-Ile/Leu-Asp-Thr-Asp-Ile/Leu), were identified in the most active ACEI fraction (0.5-1 kDa) of the absorbable flaxseed protein digest by de novo sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号