首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4+ - and NO3-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4+- rich fertilizer solution stimulated nitrification in soil more than NO3-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4+ rather than in NO3, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4+- rather than NO3-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4+ was applied to soil under relatively aerobic conditions.  相似文献   

2.
The retention walls in a pond containing the residues from the pyrite mine of Aznalcóllar (southern Spain) broke open on 25 April 1998, spilling approximately 6 × 106 m3 of polluted water and toxic tailings, which affected some 55 km2. Drying and aeration of the tailings resulted in oxidation, forming an acidic solution with high pollutant contents, the effects of which were studied in a calcareous soil. The infiltration of this solution markedly affected only the first 12 mm of the soil, where strong acidification caused the weathering of the carbonates, and where the fine mineral particles were hydrolysed. The SO42− ions in the acidic solution precipitated almost entirely at this depth, forming gypsum, hydroxysulphates and complex sulphates. The Fe3+ ions also precipitated there, mainly in amorphous or poorly crystallized forms, adsorbing to As, Sb, Tl and Pb dissolved in the acidic solution. The Al3+ ions, though partly precipitating in the acidic layer, accumulated mostly where the soil pH exceeded 5.5 (12–14 mm in depth). They did so primarily as amorphous or poorly crystallized forms, adsorbing to Cu dissolved in the acidic solution. The Zn2+ and Cd2+ ions accumulated mainly at pH > 7.0 (19–21 mm in depth), being adsorbed chiefly by clay mineral. After 15 months, only the first 20 mm of the soil were acidified by the oxidation of the tailings and most of the pollutants did not penetrate deeper than 100 mm. Consequently, the speed of the cleanup of the toxic spill is not as important as a thorough removal of tailings together with the upper 10 cm of the soil.  相似文献   

3.
Abstract. The recommended method of reducing the emission of NH3 while spreading manure is to plough or harrow the manure into the soil. This in turn increases the possibility of N2O emission. At two sites in southern Sweden emissions of NH3 and N2O were measured after spreading pig slurry by broadcasting and band spreading. The band spreading technique can be used in growing crops i.e. when nitrogen is most needed, and it is thought that the NH3 emission is smaller with this technique compared to broadcasting. The average NH3 loss was 50% of applied NH4+ during warm/dry conditions and 10% during cold/wet conditions. The N2O emission was always less than 1% of applied NH4+. When the NH3 emission decreased, the direct N2O emission increased. However, when taking into account the indirect N2O emission due to deposition of NH3 outside the field, the spreading techniques all produced similar total N2O emissions. The ammonia emission was not much lower for the band spreading technique compared to broadcasting, when compared on seven occasions.  相似文献   

4.
Abstract. The effects of especially frequent nitrogen (N) additions (from 1959 to 1986, totalling 860 kg N ha−1) and liming (in 1958 and 1980, totalling 6000 kg CaCO3 ha−1) on CH4 uptake by a boreal forest soil were studied in a stand of Norway spruce. Except for a forested reference plot, the stand was clear-cut in January 1993 and the following year one-half of each clear-cut plot was prepared by mounding. Fluxes of CH4 were measured with static chambers in the autumn before clear-cutting and during the following four summers. The average CH4 uptake during 1993–96 in the forested reference plot was 82 μg CH4 m−2 h−1(ranging from 10 to 147 units). In the first summer after clear-cutting, the cleared plot showed 42% lower CH4 uptake rate than the forested reference plot, but thereafter the difference became less pronounced. The short-term decrease in CH4 consumption after clear-cutting was associated with increases in soil NH4+ and NO3concentrations. Mounding tended at first to stimulate CH4 uptake but later to inhibit it. Neither liming nor N-fertilization had significant effects on CH4 consumption. Our results suggest that over the long term, in N-limited upland boreal forest soils, N addition does not decrease CH4 uptake by the soil.  相似文献   

5.
In acid soils in the Eastern Plains of Colombia, forage grasses planted on land prepared before the previous dry season produced 40–50% more dry matter than when land was prepared immediately before planting. Virtually no NO3 accumulated in surface (0–10 cm) soil from three native undisturbed savanna sites. Where land was ploughed before the dry season, NO3 levels increased gradually after a 2–3 month lag, and dropped at the beginning of the rains. In samples incubated for 4 weeks, more NO3 accumulated in the wet than the dry season. A similar 2–3-month lag occurred when land was ploughed after the dry season. NH4+ levels were higher in ploughed than savanna soils, and rose in all soils at the beginning of the rains. More NO3 and NH4+ accumulated on incubation in pots than in soil cores. Forage grasses inhibited NO3 accumulation in the soil, relative to plant-free plots, and legumes stimulated it. N fertilization overcame this inhibition except in the case of Brachiaria humidicola .  相似文献   

6.
Significant increases in extractable ions resulted from air-drying and grinding samples of two infertile Aquults. Effects of the sample preparation differed markedly between ions and between the two soils. Regression equations were calculated to predict extractable ions in dried, ground samples from extractable ions in fresh, unground samples and the relationships were compared between the two soil series. Regressions were significantly different between soils for extractable PO34, Mg++, and K+, but not for Ca++ and Na+. Extractable NH +4 and NO-3 in fresh, unground samples were not correlated with those in air-dry, ground samples of either soil. Differences in response to preparation between soil types appeared to be related to the oxidative status of these soils in the field, wherein constituents of more poorly-drained soils may be less stable to the oxidizing conditions of air-drying and grinding. Such complexities suggest that effects of sample preparation should be considered when interpreting soil nutrient data for studies of forest nutrient cycling and forest soil fertility.  相似文献   

7.
Ion Transport and Permeability in an Allophanic Andisol at Low pH   总被引:2,自引:0,他引:2  
Allophanic Andisols have a significant pH-dependent charge. The positive charge increases and the negative charge decreases as pH decreases; therefore, anion movement becomes slower and cation movement becomes faster as pH decreases in the soil. At low pH, soil dispersion occurs easily due to electric repulsive force. The permeability of the soil then decreases because of structural changes that occur when dilute HCl or HNO3 is percolated in the soil. However, soil permeability does not decrease when dilute H2SO4 is percolated in the soil. This is because SO42- strongly adsorbs on the soil surface at low pH and the soil remains flocculated.  相似文献   

8.
Abstract. Regular application of slurry manure in large quantities is thought to degrade soil structure and increase erodibility. One hypothesis links this to the large input of potassium which increases the exchangeable potassium percentage (EPP) and, thereby, dispersion. The effect of EPP on erodibility was quantified in three experiments. In the laboratory, eleven rainfall experiments were conducted using a silty topsoil from a typic Hapludalf which was fertilized to EPPs of 4 to 18%. Field rainfall experiments on 22 Inceptisols and Alfisols were used to examine whether the long-term application of monovalent cations (Na+, K+ and NH4+) with slurry manure had changed soil properties, especially erodibility. In addition, erodibilities of 32 soils determined with natural and simulated rains were taken from literature. The experiments on these 65 soils together covered a wide range of soils, slopes and rainfalls. Dispersion by a large percentage of highly hydrated ions (K+, Na+) reduced the infiltration rate faster, caused runoff up to 5 min earlier, and increased sediment concentrations by 15g/l compared to low EPP soils. These changes increased soil erodibility of the Universal Soil Loss Equation (USLE) by 0.021 t × h/N × ha (where N = Newtons) for each 1% increase in EPP + ESP (exchangeable sodium percentage). The ESP contributed little to this increase as ESP was less than 1/10 of EPP in the experiments.
Fields with long-term manure application had similar chemical, physical and microbiological soil properties as fields without slurry manure except for slightly greater pH (+ 0.6) and P (+ 17 mg/kg) values. We conclude that, as long as the potassium input and output are balanced, the long-term use of slurry manure does not increase erodibility.  相似文献   

9.
Abstract. Inputs of acidity to the ground arise through two distinct routes: wet deposition which includes all acidity deposited in rain and snow and dry deposition, the direct sorption of SO2, NO2 or HNO3 gases by vegetation or soil surfaces. The acidity from dry deposition of SO2 and NO2 is created during the oxidation of deposited SO2 and NO2 to SO24 and NO3 respectively. The areas of Britain experiencing the largest wet deposition of acidity are the high rainfall areas of the west and north, in particular the west central highlands of Scotland, Galloway and Cumbria where inputs exceed 1 kp H+ ha−1 annually. Wet deposited acidity in the east coast regions of Britain is in the range 0.3–0.6 kg H+ ha−1 a−1. Monitoring data for rainfall acidity at rural sites throughout northern Britain show a decline in deposited acidity of about 50% during the last six years. Dry deposition is largest in the industrial midlands and southeast England and in the central lowlands of Scotland, where concentrations of SO2 are largest. In these regions the dry deposition of SO2 following oxidation may lead to acid inputs approaching 3 kg H+ ha−1 a−1 and greatly exceeding wet deposition.  相似文献   

10.
The origin of highly acidic (pH<4.5) barren soils in the Klamath Mountains of northern California was examined. Soil parent material was mica schist that contained an average of 2,700 mg N kg−1, which corresponds to 7.1 Mg N ha−1 contained in a 10-cm thickness of bedrock. In situ soil solutions were dominated by H+, labile-monomeric Al3+ and NO3, indicating that the barren area soils were nitrogen saturated—more mineral nitrogen available than required by biota. Leaching of excess NO3 has resulted in removal of nutrient cations and soil acidification. Nitrogen release rates from organic matter free soil ranged from 0.0163 to 0.0321 mg N kg−1 d−1. Nitrogen release rate from fresh ground rock was 0.0465 mg N kg−1 d−1. This study demonstrates that geologic nitrogen may represent a large and reactive nitrogen pool that can contribute significantly to soil acidification.  相似文献   

11.
Abstract. The aim of this study was to investigate the effects of water submergence depth on radial oxygen loss (ROL), soil solution chemistry and rice growth performance in acid sulphate soils in southern Vietnam. ROL was measured in a solution culture. In a separate pot experiment the impact of water submergence depth on rice growth and soil solution chemistry was studied. Three submergence depths were used in the two experiments (5, 10 and 15 cm). ROL declined with submergence depth and was significantly greater in young roots (with no root hairs) than in older roots. In the pot experiment rice growth and soil solution chemistry were clearly affected by the submergence depth. During the first crop at 5 cm submergence, there was a significantly higher yield and a higher oxidation state (pe+pH) compared to 10 or 15 cm submergence. The Fe concentration was significantly greater at the 5 cm depth compared to the 10 or 15 cm depth. SO42– reduction was delayed at the 5 cm depth. Rice yield was c. 25% less at the 15 cm than at the 5 cm depth. During a second crop, there was a substantial SO42- reduction and H2S formation and almost no significant effects of submergence depth on either soil solution chemistry or crop yield. In a field experiment with a dry-season rice crop, yield and Fe, Al and SO42– concentrations were higher at a shallow submergence depth than at greater depths in the same field, showing similar depth trends to those found during the first crop in the pot experiment. Farmers should be advised to use a shallow submergence depth and, if possible, avoid deep-rooted rice varieties. A conceptual model is suggested, which summarizes the relationships between ROL and soil solution chemistry.  相似文献   

12.
针对设施土壤盐渍化日趋加重的现状,采用土柱模拟试验,以无隔盐层为对照,设置了3种隔盐层类型:砂砾层(T1),复合有机物料层(T2)、砂砾+复合有机物料层(T3),探索不同隔盐模式的抑盐效果。结果表明:盐离子含量随着土层深度的增加而逐渐降低;就7种主要离子(Na+,NH4+,K+,Ca2+,Cl-,NO3-,SO42-)总含量而言,T3在0-10 cm,10-20 cm和20-30 cm时分别较CK降低了13.5%,0.61%和27.0%,效果较好;T1和T2隔盐效果不明显。0-30 cm土层,T3分别增加了脲酶、蔗糖酶、磷酸酶活性达7.30%,4.70%,3.58%,降低了过氧化氢酶活性达8.53%;而T1则趋势相反。说明T3可以较好地抑制设施盐渍化土壤盐离子在耕层的聚集,同时可以提高土壤酶活性,对改善设施盐渍化土壤质量具有一定的作用。  相似文献   

13.
Characteristics of the treatment processes inside a MSL system were investigated by using a laboratory-scale MSL system, which was set up in a D 10 × W 50 × H 73 cm acrylic box enclosing "soil mixture blocks" alternating with permeable zeolite layers. For the study of the treatment processes inside the system, wastewater, with mean concentrations (mg L−1) of COD: 70, T-N: 12, T-P: 0.9, was introduced into the system at a loading rate of 1,000 L m−2 d−1. Treatment processes in the MSL system were different for the COD, P and N pollutants. Eighty percent of COD was removed in the 1st soil layer among the 6 layers, and the removal rate increased as water moved down and finally reached 90% in the last layer of the system. Phosphorus concentration was lower under the soil mixture layers than under the permeable layers, presumably because P was adsorbed mainly by soil and mixed iron particles. The P concentration in water gradually decreased in the lower layers of the system. The concentration of PO43--P was generally lower in the aerated MSL system than in the non-aerated one. NH4+-N was adsorbed and nitrified in the upper part of the system. The NO3-N concentration was lower in water under the soil mixture layers than under the permeable layers, indicating that denitrification mainly occurred in the soil mixture layers.  相似文献   

14.
Abstract. Leaching of calcium (Ca), potassium (K) and magnesium (Mg) from urine patches in grazed grassland represents a significant loss of valuable nutrients. We studied the effect on cation loss of treating the soil with a nitrification inhibitor, dicyandiamide (DCD), which was used to reduce nitrate loss by leaching. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). The treatment of the soil with DCD reduced Ca2+ leaching by the equivalent of 50%, from 213 to 107 kg Ca ha−1 yr−1 on a field scale. Potassium leaching was reduced by 65%, from 48 to 17 kg K ha−1 yr−1. Magnesium leaching was reduced by 52%, from 17 to 8 kg Mg ha−1 yr−1. We postulate that the reduced leaching loss of these cations was due to the decreased leaching loss of nitrate under the urine patches, and follows from their reduced requirement as counter ions in the drainage water. The treatment of grazed grassland with DCD thus not only decreases nitrate leaching and nitrous oxide emissions as reported previously, but also decreases the leaching loss of cation nutrients such as Ca2+, K+ and Mg2+.  相似文献   

15.
The effect of pH on the adsorption of copper (Cu), lead (Pb) and cadmium (Cd) by a peat soil was studied, and the results compared with those corresponding to cation binding by a dissolved peat humic acid (HA), and interpreted with a NICA–Donnan model. A potentiometric titration technique was used to determine the adsorption isotherms for H+, at different ionic strengths, and for Cu2+, Pb2+ and Cd2+ at different pH values, in a peat soil. The effect of the ionic strength on proton binding was similar for the soil (solid) organic matter and for dissolved HA. The adsorption isotherms for cation–peat and the binding curves cation–dissolved HA are almost parallel, although more cation was adsorbed per kg of C in the dissolved HA. The effect of pH on cation binding is similar for dissolved organic matter and for the organic soil. At low metal concentration the amount of adsorbed metal followed the order Cu2+ > Pb2+ > Cd2+. The cation-binding parameters obtained with the NICA–Donnan model allow excellent simulation of the effect of pH on the adsorption of Cu, Pb and Cd ions in the studied peat soil. The binding constants for the peat suspension were greater than the corresponding generic parameters for dissolved HA. Speciation calculations showed that for Cu and Pb, the most abundant fraction was the metal adsorbed on peat, whereas for Cd the most abundant fraction was dissolved metal.  相似文献   

16.
Emissions of nitrous oxide (N2O) and nitrogen gas (N2) from denitrification were measured using the acetylene inhibition method on drained and undrained clay soil during November 1980-June 1981. Drainage limited denitrification to about 65% of losses from undrained soil. Emissions from the undrained soil were in the range 1 to 12 g N ha–1 h–1 while those from the drained soil ranged from 0.5 to 6 g N ha–1 h–1 giving estimated total losses (N2O + N2) of 14 and 9 kgN ha–1.
Drainage also changed the fraction of nitrous oxide in the total denitrification product. During December, emissions from the drained soil (1.8±0.6 gN ha–1 h–1) were composed entirely of nitrous oxide, but losses from the undrained soil (2.7 ± 1.1 g N ha–1 h–1) were almost entirely in the form of nitrogen gas (the fraction of N2O in the total loss was 0.02). In February denitrification declined in colder conditions and the emission of nitrous oxide from drained soil declined relative to nitrogen gas so that the fraction of N2O was 0.03 on both drainage treatments. The delayed onset of N2O reduction in the drained soil was related to oxygen and nitrate concentrations. Fertilizer applications in the spring gave rise to maximum rates of emission (5–12g N ha–1 h–1) with the balance shifting towards nitrous oxide production, so that the fraction of N2O was 0.2–0.8 in April and May.  相似文献   

17.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

18.
Although iodine is harmful to plants, rice plants ( Oryza sativa L.) absorbed iodine more selectively than bromine. To explain this selective absorption, the authors proposed the following hypothesis based on the fact that the standard redox potential for (I2+ 2e = 2I) is lower than that for (Br2+ 2e = 2Br) and (Fe3++ e = Fe2+), and the roots of rice plants are able to oxidize ferrous ion (Fe2+) into ferric ion (Fe3+), namely rice plants oxidize iodide ion (I) to form molecular iodine (I2) via the oxidizing power of their roots, and absorb the molecular iodine formed more selectively than iodide ion. Bromine, by contrast, is absorbed by rice plants only in the form of ion (Br). According to this hypothesis, there should be a significant correlation between the oxidizing power of the rice roots and the amount of iodine absorbed. Therefore, the relationship between the oxidizing power of the roots and the concentration of iodine absorbed was studied in a water culture using 8 varieties of rice plants. Rice seedlings, 14 d after germination, were cultured in a solution containing 1 mg L−1 each of iodide and bromide ions for 3 d. The oxidizing power of the rice roots was evaluated based on the amount of 1-naphthylamine oxidized by the roots. A significant correlation (0.78, n = 16, 0.1% significant level) was found between the oxidizing power and the concentration of iodine absorbed by the roots. However, no relationship was found between the oxidizing power of the roots and the amount of bromine absorbed.  相似文献   

19.
Abstract. We evaluated the effectiveness of capillary-wick samplers (PCAPS) for continuous monitoring of resident nitrate concentration in three 'soil-crop-climate' systems differing in soil type, land use and climate. These systems involved: (i) acid silty soils under a beech-oak forest affected by heavy N-NH4+ deposition in Belgium; (ii) silty soils under wheat cropping and a short rotation willow coppice plantation (SRC) in Belgium; and (iii) volcanic ash soils under plantain cultivation with and without urea fertilization in Colombia. The PCAPS continuously applied a suction of 0 to 5.4 kPa to the soil water below the effective rooting zone without the need for an auxiliary vacuum source. The nitrate concentrations showed large variations over time and ranged between 6–192 mg l–1 under forest, 19–143 mg l–1 under wheat, 11–47 mg l–1 under SRC and 3–138 mg l–1 under fertilized plantain. The analysis of the soil leachates collected with PCAPS confirms previous results dealing with leaching of nitrate and alkaline and alkaline-earth cations in similar 'soil-crop-climate' systems. It was concluded that PCAPS was a suitable tool to collect soil solutions and that it could help to assess nitrate leaching losses in various ecological or cropping conditions.  相似文献   

20.
Aluminium speciation and pH of an acid soil in the presence of fluoride   总被引:2,自引:0,他引:2  
The aim was to determine whether the addition of F to an acid soil reduces the concentration of free Al3+ and other forms that have been shown to be toxic to plants. The ability of two different extracts to reflect Al speciation in the soil solution was also investigated. Addition of F (0-5.2μmolg−1) to an acid soil (pH 4.15, soil solution) increased the pH and total concentrations of Al and F in the soil solution whereas Al3+ remained constant or decreased. Soil solution pH, total soluble Al and Al extracted by 0.01 m CaCl2 are not good predictors of the likelihood of aluminium toxicity in soils containing soluble fluoride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号