首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To understand the neurochemical properties of the gastric myenteric plexus of ruminants, the expression patterns of calbindin D-28k (CB), calretinin (CR), substance P (SP) and calcitonin gene-related peptide (CGRP) were explored in the Korean native goat. In gastric myenteric plexus, CB and SP immunoreactivity were observed in round- or oval-shaped neurons. CR and CGRP immunoreactivity were detected only in the nerve fibers. This immunohistochemical localization of CB, CR, CGRP and SP in the myenteric plexus of the goat stomach exhibited species-specific patterns. These findings suggest that these substances may be directly or indirectly related to the gastric functions of the goat stomach.  相似文献   

2.
This study was performed to investigate the neurochemical characteristics of the vagal ganglia of the goat by immunohistochemical methods using calbindin D-28k (CB), calretinin (CR). parvalbumin (PA), substance P (SP). calcitonin generelated peptide (CGRP) and galanin (GAL) antibodies. In the proximal vagal ganglia (jugular ganglia), CGRP- (57.1%), SP- (48.2%), GAL- (8.6%), PA- (8.7%), CB- (8.5%) and CR-like (5.3%) immunoreactive cells were observed. In the distal vagal ganglia (nodose ganglia), CGRP- (40.5%), SP- (30.20%), CB- (22.0%) and CR-like (18.10%) immunoreactive cells were present. The double immunohistochemical study showed, that in the proximal vagal ganglia, CGRP immunoreactivity was co-localized in SP- (84.8%), GAL-(100%), CB- (5.6%) and CR- (5.7%) immunoreactive cells: SP immunoreactivity was co-localized in the CGRP- (80.0%), GAL- (100%). CB- (5.3%) and CR- (5.6%) immunoreactive cells; GAL immunoreactivity coexisted in the CGRP- (4.4%) and SP- (19.8%) immunoreactive cells, but not in calcium-binding proteins (CBP)-immunoreactive cells; PA immunoreactivity was absent in the CGRP- and SP-immunoreactive cells; CB and CR immunoreactivities were seen in the CGRP-(0.8%) and SP-immunoreactive (0.9%) cells. On the other hand, in the distal vagal ganglia, CGRP immunoreactivity appeared in SP- (66.6%), CB- (1.0%) and CR- (1.2%) immunoreactive cells; SP immunoreactivities were observed in the CGRP- (44.1%), CB- (1.0%) and CR- (1.2%) immunoreactive cells; CB immunoreactivities were present in the CGRP- (0.5%) and SP- (0.8%) immunoreactive cells; CR immunoreactivities were contained in the CGRP- (0.5%) and SP- (0.8%) immunoreactive cells. These findings indicate that the goat is distinct from other mammalian species in the distribution and localization of neurochemical substances in the vagal ganglia. and suggest that these differences may be related to physiological characteristics, particular those of the ruminant digestive system.  相似文献   

3.
The objectives of this study was to provide a quantitative analysis of calcium-binding proteins, calbindin (CB), parvalbumin (PA), substance P (SP), calcitonin gene-related peptide (CGRP) and galanin (GAL), in trigeminal ganglia of goats, to establish whether they exhibit coexistence relationships between each other, and to examine possible colocalization with SP, CGRP and GAL, which have been well characterized according to their distributions in an abundance of large and/or small neurones. CB (12.78%), PA (31.91%), SP (24.63%), CGRP (44.44%) and GAL (3.29%) immunoreactive (IR) cells were observed. About 38.37, 8.7 and 0.73% of CGRP-IR neurones in the trigeminal ganglion were also immunoreacted with SP, GAL and CB, respectively. Almost all SP-IR cells are labelled with CGRP (approximately 92.52%), whereas only 16.02 and 0.44% of SP-IR neurones colocalized with GAL and CB. Approximately 4.65 and 1.10% of the CB-IR cells were found to contain CGRP and SP immunoreactivity, respectively. Conversely, no CB-IR cell exhibited GAL immunoreactivity. In addition, all the GAL-IR cells showed CGRP and SP immunoreactivity. The number of CB-, PA-, SP-, CGRP- and GAL-IR neurones in goat trigeminal ganglion are abundant than that of other animals. These results elucidate that the goat differs from other mammalian species in the distribution and localization of neurochemical substances in trigeminal ganglia, and suggest that this difference may be relevant to the morphological characteristics of cerebral vasculatures such as epidural rete mirabile of goat.  相似文献   

4.
The pattern of cerebrovascular substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive (IR) innervation was investigated in the quail. SP- and CGRP-IR nerves were relatively a few in the rostral part of the anterior circulation, and very scanty or lacking in its caudal part and the whole of the posterior circulation. A significant finding was that the anterior circulation in the majority of individuals is furnished with a varying proportion of SP-IR nerves with or without CGRP immunoreactivity. There was a good correlation in the expression of CGRP immunoreactivity between SP-IR cells in the ophthalmic division of the trigeminal ganglion and SP-IR nerves supplying the major cerebral arteries. In the quail, SP- and CGRP-IR fiber bundles are usually present in the internal ethmoidal artery (IEA). From these and other findings, it is most probable that cerebral perivascular SP- and CGRP-IR nerves are mainly derived from the same categories of neurons in the primary sensory ganglion via the IEA. The close association of varicose SP-IR axons to the nerve cells in the pial arteries suggests that these intrinsic neurons may play some vasocontrolling roles through the modulatory effect of their pericellular SP-IR axons.  相似文献   

5.
In the present study, both the ELISA test and immunohistochemical staining were used to investigate the influence of artificially induced ileitis on the chemical coding of enteric neurons in the pig. The ileum wall in experimental (E) pigs was injected in multiple sites with 4% paraformaldehyde to induce inflammation, while in the control (C) animals, the organ was injected with 0.1M phosphate buffer (pH 7.4). Three days after ileitis induction, samples of ileum wall from all the animals were evaluated for VIP, SP, CGRP, NPY, GAL and SOM concentration (ELISA test) and the expression of these biologically active substances by the enteric neurons (immunohistochemical staining). Quantitative results showed that ileitis decreased tissue concentration of VIP, CGRP and SOM but increased tissue concentration of SP, NPY and GAL. Immunochemistry revealed that in both the experimental and control pigs, VIP-positive (VIP+) nerve fibers supplied mainly ileal blood vessels, and the labeled pericarya were located in the inner (ISP) and outer submucous plexus (OSP). SP+ and CGRP+ nerve terminals were found in both the mucous and muscular membrane, while the labeled pericarya were found in ISP, OSP and myenteric plexus (MP). In both C and E pigs, the very few nerve terminals containing NPY and SOM were located mainly in the mucous membrane. NPY- or/and SOM-immunopositive nerve cell bodies were found in ISP, OSP and MP. GAL+ nerve fibers supplied all layers of the ileum and were most numerous in the muscular membrane, while the labeled pericarya were present in all the enteric plexuses. The present results suggest that enteric neurons are highly plastic in their response to inflammation.  相似文献   

6.
We examined the age-related changes of calbindin D-28k (CB)-immunoreactive neurons and overall populations of neurons in the myenteric plexus of gerbil duodenum using whole mount preparations and immunohistochemistry. The circumference of duodenum increased age-dependently. CB-immunoreactive neurons were observed in all groups, and most of them had the Dogiel type II morphology. The fully developed cobweb-like structures were observed in the myenteric plexus of duodenum at postnatal month (PM) 3 to 24. Although the highest numbers of CB-immunoreactive neurons and overall population were observed in PM 1.5, it is related with significant increase of the size of circumference between PM 1.5 to PM 3. CB-immunoreactive neurons were slightly decreased with age between PM 3 to PM 24. We have also found that whole numbers of myenteric neurons were also significantly decreased in PM 24 group. These results suggest that loss of overall numbers of myenteric neurons and CB-immunoreactive neurons may be related with age-related neurodegeneration and functional loss of duodenum in the gerbil.  相似文献   

7.
本研究采用小肠铺片NADPH-d组化法、NADH-d组化法和抗NF免疫组化法分别对0日龄、5日龄、28日龄仔猪的肌间神经元进行了比较研究。结果表明:NADPH-d组化法可以选择性的标记合成NO的神经元亚群,大部分阳性肌间神经元符合DogielI型神经元的形态特征;NADH-d组化法可以非选择性的标记大部分神经元,且采用该法观察到的肌间神经元的密度明显高于NADPH-d组化法,但该法不能清晰的显示肌间神经丛的细微结构,不适合用于神经元类型的观察;抗NF免疫组化法可以清晰的显示肌间神经元的突起,28日龄仔猪体积较大的阳性神经元主要为DogielI型和DogielII型神经元。  相似文献   

8.
The present study investigated the arrangement and chemical coding of intramural nerve structures supplying the porcine stomach. Tissue samples comprising all layers of the wall of the ventricular fundus were collected from juvenile female pigs (n = 4), which were first deeply anaesthetized and then transcardially perfused with buffered paraformaldehyde. The cryostat sections were processed for double‐labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene‐product 9.5) and their neurochemical characteristics using antibodies against vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal‐polypeptide (VIP), somatostatin (SOM) and substance P (SP). The study confirmed the presence of three distinct nerve plexuses within the wall of the porcine stomach including one myenteric plexus and two, outer and inner, submucous plexuses. The outer and inner submucous plexuses (OSP and ISP, respectively) were similar in respect to the chemical coding of neurons they contained. Most of the neurons expressed immunoreactivity to SP (ISP 58%; OSP 60%) or to VAChT (ISP 56%; OSP 56%), some of them stained for GAL (ISP 18%; OSP 15%) and solitary nerve cells were SOM‐positive (in ISP only). No neurons in the submucous plexuses displayed immunoreactivity to VIP or NOS. In the myenteric plexus, some neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (8%) or SP (8%) while no neurons immunoreactive for SOM were encountered. In both submucous and myenteric plexuses, many varicose nerve fibres expressed immunoreactivity to VAChT, GAL or SP, while VIP‐, SOM‐ or NOS‐positive nerve terminals were less numerous. The comparison of the present results with those obtained by other authors has revealed distinct inter‐species differences regarding the arrangement and chemical coding of nerve structures supplying the mammalian stomach.  相似文献   

9.
The present study was designed to investigate the expression of biologically active substances by intramural neurons supplying the stomach in normal (control) pigs and in pigs suffering from dysentery. Eight juvenile female pigs were used. Both dysenteric (n = 4; inoculated with Brachyspira hyodysenteriae) and control (n = 4) animals were deeply anaesthetized, transcardially perfused with buffered paraformalehyde, and tissue samples comprising all layers of the wall of the ventricular fundus were collected. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against vesicular acetylcholine (ACh) transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), Leu(5)-enkephalin (LENK), substance P (SP) and calcitonin gene-related peptide (CGRP). In both inner and outer submucosal plexuses of the control pigs, the majority of neurons were SP (55% and 58%, respectively)- or VAChT (54%)-positive. Many neurons stained also for CGRP (43 and 45%) or GAL (20% and 18%) and solitary perikarya were NOS-, SOM- or VIP-positive. The myenteric plexus neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (7%), SP (6%) or CGRP (solitary neurons), but they were SOM-negative. No intramural neurons immunoreactive to LENK were found. The most remarkable difference in the chemical coding of enteric neurons between the control and dysenteric pigs was a very increased number of GAL- and VAChT-positive nerve cells (up to 61% and 85%, respectively) in submucosal plexuses of the infected animals. The present results suggest that GAL and ACh have a specific role in local neural circuits of the inflamed porcine stomach in the course of swine dysentery.  相似文献   

10.
The present study investigated the arrangement and chemical coding of intramural nerve structures supplying the porcine stomach. Tissue samples comprising all layers of the wall of the ventricular fundus were collected from juvenile female pigs ( n  = 4), which were first deeply anaesthetized and then transcardially perfused with buffered paraformaldehyde. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their neurochemical characteristics using antibodies against vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal-polypeptide (VIP), somatostatin (SOM) and substance P (SP). The study confirmed the presence of three distinct nerve plexuses within the wall of the porcine stomach including one myenteric plexus and two, outer and inner, submucous plexuses. The outer and inner submucous plexuses (OSP and ISP, respectively) were similar in respect to the chemical coding of neurons they contained. Most of the neurons expressed immunoreactivity to SP (ISP 58%; OSP 60%) or to VAChT (ISP 56%; OSP 56%), some of them stained for GAL (ISP 18%; OSP 15%) and solitary nerve cells were SOM-positive (in ISP only). No neurons in the submucous plexuses displayed immunoreactivity to VIP or NOS. In the myenteric plexus, some neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (8%) or SP (8%) while no neurons immunoreactive for SOM were encountered. In both submucous and myenteric plexuses, many varicose nerve fibres expressed immunoreactivity to VAChT, GAL or SP, while VIP-, SOM- or NOS-positive nerve terminals were less numerous. The comparison of the present results with those obtained by other authors has revealed distinct inter-species differences regarding the arrangement and chemical coding of nerve structures supplying the mammalian stomach.  相似文献   

11.
OBJECTIVE: To determine distribution of catecholaminergic and peptidergic nerve fibers in canine tracheas by use of immunohistochemistry. SAMPLE POPULATION: 10 tracheas collected from healthy adult dogs after euthanasia. PROCEDURE: Structure of the nerve network and distribution of tyrosine hydroxylase (TH)- and 6 types of neuropeptide-containing nerves in canine tracheas were immunohistochemically studied, using neurochemical markers. RESULTS: Intraepithelial free nerve endings with immunoreactivity for calcitonin gene-related peptide (CGRP) and substance P (SP) were observed.Tyrosine hydroxylase-, SP-, vasoactive intestinal peptide (VIP)-, and galanin (GAL)-immunoreactive nerve fibers were observed within and around the submucosal seromucous gland. In the smooth muscle layer, numerous TH- and GAL-immunoreactive nerve fibers, a moderate number of VIP- and neuropeptide Y (NPY)-immunoreactive nerve fibers, and a few SP- and methionine enkephalin (ENK)-immunoreactive nerve fibers were observed. Numerous nerve cell bodies with VIP and GAL immunoreactivity and a few with SP ENK, and NPY immunoreactivity were observed. Many TH-immunoreactive fibers were arranged in a meshwork around blood vessels. Nerves with CGRP-, SP-, VIP-, GAL-, ENK-, and NPY-immunoreactivity were also observed around blood vessels. CONCLUSIONS: Complex innervation, including catecholamine- and neuropeptide-containing nerves, which may be related to regulation of muscle contraction and glandular secretion, are found in canine tracheas.  相似文献   

12.
The presence of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), substance P (SP) and calcitonin gene-related peptide (CGRP) was studied in neurons and nerve fibers of the porcine otic ganglion. ChAT-positive neurons were very numerous while VAChT-positive nerve cells were moderate in number. The number of neurons containing NPY and VIP was lower and those containing SOM, GAL, SP or CGRP were observed as scarce, or single nerve cells. The above mentioned substances (except SOM) were present in nerve fibers of the ganglion. ChAT- and VAChT-positive nerve fibers were numerous, while the number of nerve terminals containing NPY, VIP and SP was lower. GAL- and CGRP-positive nerve fibers were scarce.  相似文献   

13.
The pig has been widely used as a model in cardiovascular research. A unique feature of the porcine extrinsic sympathetic cardiac nerves is that they arise from intermediate ganglia in the thoracic cavity. The localization and pattern of distribution of nerve cell bodies and fibers containing tyrosine hydroxylase (TH), dopamine B-hydroxylase (DBH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), methionine-enkephalin (MET) as well as calcitonin gene-related peptide (CGRP), substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was studied with immunohistochemistry. Almost all the neurons showed immunoreactivity to TH. Immunoreactivity to NPY, VIP, SOM, GAL, MET and PACAP was displayed by nerve cell bodies while nerve fibers exhibited immunoreactivity to all the neuropeptides studied. Therefore, it seems that the chemical coding of neurons and especially nerve fibers in the porcine intermediate ganglion share general similarities (with certain neurochemical variability), with porcine prevertebral ganglia (e.g., celiacomesenteric and caudal mesenteric ganglia).  相似文献   

14.
This paper describes the morphology and distribution of the enteric nervous system (ENS) cells and fibres immunoreactive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), substance P (SP), calcitonin gene-related peptide (CGRP), NF200 kDa (NF200), and S100 protein. The percentages of subclasses of enteric neurons in the total neuronal population were investigated by the use of anti-PGP 9.5 or anti-NSE antibodies.ChAT-IR myenteric plexus (MP) and submucosal plexus (SMP) neurons were 66 ± 7% and 74 ± 15%, respectively, whereas those cells expressing nNOS-IR were 38 ± 7% and 5 ± 1%, respectively. MP and SMP neurons expressing both phenotypes were also present. SP-IR was expressed by 14 ± 13% of MP and 66 ± 8% of SMP neurons whereas CGRP-IR was observed only in the SMP (43 ± 6%). NF200-IR was expressed by 61 ± 15% and 91 ± 10% of the MP and SMP neurons, respectively. The majority of the CGRP-IR SMP neurons expressed also SP-IR. Almost all SP-IR neurons in both the plexuses were cholinergic. The present study quantifies the main neuronal subpopulations of the ENS of the horse ileum; these data might be utilized to understand the neuronal modifications which occur in several gastrointestinal tract disorders.  相似文献   

15.
The ileocaecal junctions of 5 horses and 2 donkeys were examined by using antisera to the following peptides: somatostatin, glucagon, gastrin, neurotensin, vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), calcitonin gene-related peptide (CGRP), substance P (SP) and neuropeptide Y (NPY). Antisera to somatostatin, neurotensin and NPY demonstrated endocrine cells in the ileal- and caecal parts of the ileocaecal junction, while immunoreactivity for glucagon was demonstrated in endocrine cells of the ileal part only. Nerve cell bodies showing immunoreactivity to SP, VIP, CGRP and PHI were demonstrated in the myenteric and submucosal plexuses and were associated with small blood vessels in the submucosa of all the regions tested. Ramified nerve fibres in the submucosa immunoreactive to SP, VIP, CGRP and PHI extended to the mucosa and to small blood vessels in the submucosa. Nerve fibres showing immunoreactivity to SP, VIP and PHI extended to the circular smooth muscle layer of the ileocaecal junction.  相似文献   

16.
The occurrence and density of distribution of nerves and endocrine cells that are immunoreactive for neuropeptides in the bovine pancreas were studied by immunohistochemistry. The six neuropeptides localized were galanin (GAL), substance P (SP), methionine-enkephalin (MENK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP). The exocrine pancreas was shown to have an appreciable number of GAL- and SP-immunoreactive nerve fibres but few fibres showing immunoreactivity for VIP and CGRP. Numerous MENK-, GAL-, SP-, and NPY-immunoreactive nerve fibres were seen in the endocrine portion of the pancreas. Nerve cell bodies in the intrapancreatic ganglia showed immunoreactivity for all of the neuropeptides except CGRP. Endocrine cells showing immunoreactivity for GAL and SP were observed in the large islets and islets of Langerhans, respectively. The present results indicate a characteristic distribution of neuropeptides in the bovine pancreas, which may regulate both exocrine and endocrine secretions of pancreas.  相似文献   

17.
With 4 figures and 1 table In this study, the presence of several neurotransmitters and transmitter synthesizing enzymes was studied in hypoglossal nucleus (HN) of the juvenile (4 months old) female pigs (n = 3). Double‐labeling immunofluorescence revealed neurones expressing cholinacetyltranspherase (ChAT), calcitonin gene‐related peptide (CGRP), nitric oxide synthase (NOS), and somatostatin (SOM). Nerve fibers within HN were ChAT, CGRP, NOS, SOM, substance P (SP), Leu‐5‐enkephalin (Leu‐5‐Enk), ß‐dopamine hydroxylase (DßH), neuropeptide Y (NPY) positive. Virtually all the perikarya contained ChAT, whereas CGRP was present in 47% of the neurones. Nerve cell bodies containing NOS or SOM were only occasionally observed. Immunoreactive nerve fibers were found in a close vicinity of the perikarya, often forming baskets around nerve cell bodies. The results obtained were compared with similar data obtained in other species. The presence of immunoreactive structures, origin of the nerve fibers, and functional significance of the findings are discussed.  相似文献   

18.
The distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-positive neurones was investigated in the chicken caecum. Double staining combined NADPHd histochemistry with immunohistochemistry for neural nitric oxide synthase (nNOS) indicated that NADPHd-positive neurones also showed immunoreactivity for nNOS. NADPHd-positive nerve cell bodies were observed in both the myenteric and the submucous plexuses. Nerve fibres showing enzyme activity were mainly distributed in the circular muscle layer, but only a few fibres in the mucosal layer. Fine nerve fibres showing NADPHd activity were found running between germinal centres in the caecal tonsil. Quantitative analysis showed no significant differences in the number of enzyme-positive nerve cell bodies per ganglion of the myenteric and the submucous plexuses among three different caecal regions; proximal, middle and distal regions. Larger numbers of ganglia were detected in the submucous plexus than the myenteric plexus at all three regions. These data indicate that nitrergic neurones in the submucous plexus mainly project to the circular muscle layer in the chicken caecum. It is possible that nitrergic nerves regulate the motility of the chicken caecum.  相似文献   

19.
The distribution of the putative motor excitatory neurotransmitter, substance P, was studied immunocytochemically in the left dorsal colon of four normal control ponies and three ponies with amitraz-induced impaction colic. Substance P-like immunoreactivity in the control ponies was observed in nerve fibres in all layers of the bowel wall and in the nerve cell bodies of the enteric ganglia. The substance P-like immunoreactivity was clearly more intense in the cell bodies of submucosal ganglia than in those of the myenteric ganglia. The internodal nerve strands of the myenteric plexus were very rich in substance P-like immunoreactivity and within the ganglia they formed dense varicose networks around the neuronal cell bodies. Nerve bundles rich in substance P-like immunoreactivity diverged inward from the myenteric plexus to contribute an abundance of varicose immunoreactive fibres to the circular muscle of the tunica muscularis. Nerve fascicles with substance P-like immunoreactivity were sparse in the longitudinal muscle except in the thickened taenial band. In the submucosa many of the nerve fibres with substance P-like immunoreactivity appeared to arise from ganglionic cell bodies. Immunoreactive fibres commonly condensed around arterial vessels in the submucosa. Fine immunoreactive nerve fascicles from the submucosal plexus also projected internally to supply the muscularis mucosae and form periglandular arrays in the lamina propria. The distribution of substance P-like immunoreactivity in the normal equine colon differed in some respects from patterns observed in large intestines of other mammals. When the colons of normal and amitraz-treated ponies were compared no differences were discerned in the distribution or intensity of substance P-like reactivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号