首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the 1988, 1989 and 1990 growing seasons, canopy and air temperatures, solar and net radiation, relative humidity and wind speed were measured at 10 minute intervals during daytime hours in a field of wellwatered Russet Burbank potatoes in southeast Idaho. A linear relationship between canopy temperature minus air temperature and vapor pressure deficit (TC-TA = 0.2 -2.0 VPD) was developed for use in the Crop Water Stress Index (CWSI). Values of CWSI for well-watered potatoes were generally in the -0.4 to 0.4 range, and exhibited a diurnal trend of decreasing values towards midday and increasing values during the afternoon. Wind speed appeared to increase the CWSI and may account for some of the observed variability.  相似文献   

2.
Field studies were conducted to examine the relative effects of net irradiance (Rn), air vapor pressure deficit (VPD) and leaf water potential (Ψ1), on leaf conductance, (C1) of well-watered potatoes. Conductances of sunlit, surface-layer leaves for the cultivars Russet Burbank, Kennebec and Lemhi Russet were positively correlated with Rn (r2=0.79, 0.83 and 0.62, respectively) for Rn between 100 and 650 Wm-2. Leaf conductance (cm s-1) for all three cultivars was described by the linear relation: C1=0.871 +0.0028 Rn (r2=0.73). Mean C1 for a full Russet Burbank canopy, comprised of measurements from both sunlit and shaded leaves, was also linearly related to Rn. Although VPD and Ψ1 were significantly correlated with C1 (r2=0.44 and 0.46, respectively), the results of multiple regression analysis showed that they had no additional effect on C1 beyond that attributed to Rn. These results indicate that potato leaf conductance is primarily related to irradiance under nonlimiting soil water conditions.  相似文献   

3.
Abstract

Flower opening in the early morning helps to avoid sterility of rice (Oryza sativa L.) caused by heat stress at anthesis. Although flower opening time (FOT) is under genetic control, it is also affected by weather, particularly by air temperature (Ta). However, the effects of Ta, solar radiation (Rs), and vapor-pressure deficit (VPD) on rice FOT are unclear, making it difficult to predict FOT. Therefore, we investigated the correlation of FOT with Ta, Rs, and VPD during various periods before anthesis under field conditions. By photographing spikelets at 10-min intervals, we determined the FOT of five cultivars. To evaluate the individual effects of cultivar, Ta, Rs, and VPD on FOT, we constructed general linear models (GLMs) and calculated mean Ta, R s, and VPD every 3 hr from 0000 to 1200. The GLMs revealed that the average Ta, Rs, and VPD between 0600 and 0900 significantly affected FOT (adjusted R 2 =0.399; P <0.001). The standardized partial regression coefficients of Ta and Rs were negative and those of VPD were positive, indicating that higher Ta, higher Rs, and lower VPD in the early morning result in earlier FOT. Moreover, multiple-regression analysis showed that the period affecting FOT the most, and the relative contributions of Ta, Rs, and VPD to FOT differ with the cultivar.  相似文献   

4.
《Plant Production Science》2013,16(4):427-434
Abstract

Deep root penetration, which allows access to deep soil water and hydraulic lift, may help plants to overcome drought stress. The aim of this study was to evaluate the ability of sixteen food crop species to take up water from deep soil layers and the extent of hydraulic lift by the use of deuterated water. Plants were grown in pots consisting of two loose soil layers separated by a hardpan and a Vaseline layer. The lower (deep) layers were always kept wet (32%; ψ = –5 kPa), while soil moisture in the upper (topsoil) ones was adjusted to 25% (ψ = –7 kPa) and 12% (ψ = –120 kPa) in the well-watered and drought treatments, respectively. The deuterium labeling of the deep soil water provided evidence that wheat, Job’s tears, finger millet, soybean, barnyard millet, rice, and rye (in decreasing order of D2O increments) extracted more water from the deep layers under drought than well-watered in topsoil. These species showed significantly greater hydraulic lift under drought, except for soybean. Most of these species also showed increased root length density in deep soil layers and sustained high photosynthetic rates under drought. In contrast, pigeon pea, cowpea, common millet, pearl millet, foxtail millet, maize, barley, and oat did not show a significant increment in either deep-water uptake or hydraulic lift under drought. In summary, increased extraction of deep soil water under drought was closely related with the magnitude of hydraulic lift.  相似文献   

5.
Plants with limited transpiration rate (TR) under high vapor pressure deficit (VPD) offer the potential to conserve soil water and thus decrease the occurrence of soil water deficit. Genetic variability in TR response to VPD has been observed in the greenhouse for soybean (Glycine max (L.) Merr.) genotypes related to PI416937, but these differences have yet to be measured in the field. The objective of this study was to observe under field conditions leaf gas exchange properties of PI416937 in comparison to nine other genotypes to determine if it expressed limited TR at high VPD. Genotypic differences in stomatal conductance measurements (a proxy for TR) matched those obtained under controlled environment conditions. Genotypes varied from no stomatal response to VPD, to strong negative responses resulting in full stomata closure at ∼4 kPa. There was a greater proportional genetic variability in stomatal conductance in the field (75% at high VPD) than was observed in the greenhouse, but this variation was correlated with greenhouse TR. However, photosynthesis was considerably limited in genotypes that had a stomatal response to VPD. Although field differences in photosynthetic capacity among genotypes were not correlated with greenhouse measurements, there was sufficient genetic variation to allow the possibility of selection of high photosynthetic capacity to overcome about a 34% decrease in stomatal conductance. Thus, a targeted breeding program to combine the water conserving TR-VPD response with increased photosynthetic capacity has the potential to increase soybean yields in field water-deficit environments.  相似文献   

6.
Simulation studies have demonstrated that limited maximum transpiration rate (TR) at high air vapor pressure deficit (VPD) in water-limited environments could result in significant increases in sorghum yield. However, such a restriction on TR at high VPD has not been documented in sorghum. The objective of this study was to search within sorghum germplasm for the possibility of restricted TR at high VPD. Twenty six genotypes were selected for measurement of VPD response based on field observations including yield, leaf temperature, and the stay-green phenotype. These genotypes were grown in a greenhouse for about 24-d growth, and then placed into individual chambers in which VPD was varied and TR measured. The results of this study showed marked variation among sorghum genotypes in TR response to VPD. Seventeen genotypes were identified as exhibiting a breakpoint in their VPD response in the range from 1.6 to 2.7 kPa, above which there was little or no further increase in TR. Therefore, these genotypes with a breakpoint have the possibility of soil water conservation when VPD during the midday cycle exceeds the breakpoint VPD. This trait would be desirable in less humid environments for increasing yields in water-deficit seasons. The observed range in the value of the BP among genotypes offers the possibility of developing genotypes with BP appropriate for specific environments.  相似文献   

7.
Dielectric relaxations of wheat doughs with different water contents and effects of sucrose, NaCl, and their mixture on relaxation temperatures were investigated using dielectric analysis (DEA). All ingredients were dissolved in distilled water used to prepare wheat flour doughs to optimum consistency. Before analysis, samples were stored at room temperature in vacuum desiccators over aw range of 0·225–0·753. Dynamic DEA measurements were made at a heating rate of 2 °C/min from 40 °C below and above the observed relaxation zone. The frequencies used were 0·1, 0·5, 1, and 5 Hz. Steady state water contents varied from 3·21 to 10·89 g H2O/100 g dm over aw range used for the plain dough (flour+water). Added ingredients increased sorption of doughs. The tan δ of DEA showed an α-relaxation (glass transition) in all doughs at all frequencies used. The relaxation peak temperature, taken as Tg, increased with increasing frequency. Added sucrose decreased the Tg of doughs, as well as added NaCl. A dramatic depressing effect of NaCl on Tg was probably due to an increase in conductivity of doughs.  相似文献   

8.
Weight losses of potatoes during storage were closely related to the product of average water vapor pressure deficit of the air between the tubers and the duration of storage in weeks. Shortly after harvest, the water loss per cm2 skin area per hour per mm Hg VPD was five to seven times as high as later in the storage period. Temperature, through its influence on respiration did not appreciably affect weight loss, but had in several cases a clear effect on specific gravity. In those cases the relations between specific gravity and either weight loss or the product of storage duration and VPD were close only if the influence of storage temperature was eliminated.  相似文献   

9.
Spikelet sterility of rice (Oryza sativa L.) results from low temperatures during panicle development. However, this temperature alone cannot fully explain the fluctuations in sterility observed in the field, since the susceptibility of rice plants to low temperature often changes according to its physiological status during sensitive stages. In the present study, we examined whether temperatures before the panicle initiation stage (PI) influence the plant's susceptibility to sterility during panicle development. To test this, we conducted a 2-year pot study and an analysis of field data using a model of cooling degree-days (CDD). In the pot study, the air temperature (Ta) and water temperature (Tw) were controlled independently for 3 weeks during the vegetative growth stage before PI. After PI, the plants were submerged in a cool water bath at a critical temperature of 19.5 °C to induce floral sterility. We found that low Tw during vegetative growth significantly increased the sterility. Low Ta during vegetative growth also significantly increased the sterility, but this effect was diminished by warm Tw even at low Ta. There was a close and negative correlation between sterility and Tw during vegetative growth. In the analysis of field data, we introduced CDD using temperatures below a threshold level of 20 °C to represent the magnitude of the exposure to low temperature from PI to the heading stage. Data of Ta was used for this analysis because data of Tw was scare. The CDD model was applied to 77 independent data sets collected at nine Agricultural Research Centers during four typical cool summers (1980, 1988, 1993, and 2003) in northern Japan. Year-to-year variations in sterility at one site were roughly accounted for by the variations in CDD, but large deviations were observed among the years. The deviations were related to Ta averaged over the 30-day period before PI. For a similar level of CDD, the lower the Ta before PI, the greater the sterility. Similar deviations were observed in the between-site relationships between sterility and CDD, and these deviations were related with the Ta before PI. These results suggest that temperatures before PI, and especially Tw, change the susceptibility of a rice plant to low temperatures during panicle development.  相似文献   

10.
Peanut (Arachis Hypogeae L.) is commonly grown on sandy soil and in environments with intermittent rainfall, both of which can lead to soil water-deficit. Limited transpiration (LT) under elevated vapor pressure deficit (VPD) can result in water conservation, allowing sustained physiological activity later in the season during reproductive development. The objective of this study was to expand the number of progeny lines phenotyped for expression of the LT trait from the mating of Tifrunner (LT trait not expressed) × NC 3033 (LT trait expressed) to allow a preliminary examination of inheritance. Half of the 24 phenotyped lines expressed LT with their VPD threshold ranging from 2.16 to 3.38 kPa. Six of the 12 genotypes expressing LT had a threshold at 2.65 kPa or less, which is the range likely to be relevant in most peanut environments. These results, indicating epistatic inheritance, are supportive of LT expression in progeny lines at a reasonable frequency for relevant use in cultivar development for water-deficit conditions.  相似文献   

11.
Air temperature (Ta) is commonly used for modeling rice phenology. However, since the growing point of rice is under water during the vegetative and the early part of the reproductive period, water temperature (Tw) is likely to have a greater influence on crop developmental rates than Ta during this period. To test this hypothesis, we monitored Tw, Ta, and crop phenology in three commercial irrigated rice fields in California, USA. Sampling locations were set up on along a transect from the water inlet into the field. (Water warms up as it moves into the field.) Ta averaged 22.7 °C across sampling locations within each field, but average seasonal Tw increased from 22 °C near the inlet to 23.4 °C furthest away from the inlet. Relative to Tw furthest from the inlet, low Tw near the inlet delayed time to panicle initiation (PI 5 days) and heading (HD 8 days) and the appearance of one yellow hull on the main stem panicle (R7 9 days). Using Tw instead of Ta when the active growing point is under water until booting (midway between PI and HD) in a thermal time model improved accuracy (root-mean-square error, RMSE) for predicting time to PI by 2.5 days and HD by 1.6 days and R7 by 1.8 days. This model was further validated under more typical field conditions (i.e., not close to cold water inlets) in six locations in California. Under these conditions, average Tw was 2.6 °C higher than Ta between planting and booting, primarily due to higher daily maximum Tw values. Using Tw in the model until booting improved RMSE by 1.2 days in predicting time to HD. Using Tw instead of Ta during this period could improve the accuracy of rice phenology models.  相似文献   

12.
《Field Crops Research》1998,58(1):69-79
We have tested whether thermal time can account for the effect of meristem temperature on leaf appearance rate (LAR) and leaf elongation rate (LER) of sorghum in a wide range of conditions without water or nutrient deficits. This requires that responses to temperature should be consistent in different locations and different seasons, and that responses of LER of different leaves of the plant should be similar. Sorghum plants (Sorghum bicolor (L.) Moench., cv. E-35-1) were sown in the field in Bamako (Mali) from October 1995 to August 1996, in Montpellier (France) in summers 1995 and 1997, and in a growth chamber. Irradiance, air and meristem temperatures (Tm) and air humidity were measured together with LER in all experiments. Unique and tight relationships were observed between Tm and LER of leaves located at different positions on the stem, for all experimental conditions when evaporative demand was low (meristem-to-air vapor pressure deficit, VPDma, lower than 2.5 kPa). Relationships remained linear over the whole studied range of Tm, i.e. 13–32°C (R2, from 0.7 to 0.87). With high evaporative demand, LER was lower than the LER expected at the same temperature but with low VPDma (LERreg); the normalized difference between LER measured on a given day (LERa) and LERreg was linearly related to VPDma (R2=0.52). A linear relationship was also observed between Tm and LAR measured before the beginning of stem elongation when Tm was lower than 27°C. The x-intercepts of relationships between Tm and LER or LAR did not differ in a covariance analysis, with a common value of 10.8°C. The use of thermal time without corrections for high temperature or photoperiod was the most appropriate way to account for the timing of leaf development. It allowed prediction of LER provided that the reduction in LER due to evaporative demand was taken into account.  相似文献   

13.
Potato (Solanum tuberosum L.) solids and reducing sugars were examined before, just after, and two weeks after transient water stress to gain an understanding of tuber changes that occur directly associated with water stress. Russet Burbank and A082260-8 potatoes were grown on Owyhee silt loam at the Malheur Experiment Station, Ontario, Oregon. Potatoes were subjected to a single episode of transient water stress by omitting furrow irrigation in either late June, July, or in early August of 1988 and 1989 to examine variety differences in the short term effects of water stress on changes in solids and reducing sugars in tuber stem ends. Irrigation was managed to maintain soil water potential above -65 kPa at 20 cm depth during tuber initiation through bulking except during transient stress when the soil water potential reached -82 to -110 kPa. Tuber samples were taken from plots and minimally stressed check treatments before stress, at the peak of stress, two weeks after the transient stress period, and after harvest. Tubers were sectioned longitudinally and the percent solids and reducing sugars were determined for samples from the tuber stem end, center, and apical end. Longitudinal tuber strips were fried after harvest to determine fry color. Tuber stem-end fry color did not darken in A082260-8 potatoes subjected to water stress. The line A082260-8 had higher stem-end solids and lower stem-end reducing sugars than Russet Burbank. Neither variety responded to transient water stress or recovery from transient stress with an immediate increase in reducing sugars in any tuber part. Reducing sugars were elevated in harvested tubers, particularly in the stem-ends of Russet Burbank potatoes subjected to water stress. Increases in tuber reducing sugars related to transient water stress were not found during the stress period or immediately after stress, but were present in harvested tubers.  相似文献   

14.
The effect of feed moisture content (10, 14 and 18%) and die temperature (110 and 160 °C) on functional properties, specific mechanical energy (SME), morphology, thermal properties, X-ray diffraction pattern (XRD), Fourier transform infrared spectroscopy (FTIR) and amylose-lipid complex formation of extruded sorghum flour was investigated. Results showed that the extrusion cooking significantly changed the functional properties of extruded sorghum flour. Increasing feed moisture increased the peak gelatinization temperature (Tp), the degree of gelatinization (%) and starch crystallinity (%) while it decreased the gelatinization temperature ranges (Tc - T0), starch gelatinization enthalpy (ΔHG) and amylose-lipid complex (%) formation. With increasing die temperature, the degree of gelatinization and amylose-lipid complex formation increased and the starch Tp, Tc-T0, ΔHG and crystallinity decreased. The FTIR spectra also showed that the extrusion cooking did not create new functional groups or eliminate them in sorghum protein, whereas the sorghum extrudate protein had random coil conformation.  相似文献   

15.
结实期土壤水分和氮素营养对水稻产量与品质的交互影响   总被引:2,自引:0,他引:2  
杂交籼稻汕优63和粳稻武育粳3号种植于土培池,于始穗期进行0N(0 g/m2)、NN(中氮,4.5 g/m2 )和HN(高氮,9.0 g/m2)3种施氮量处理,于抽穗后7 d至成熟期设置了WW(保持浅水层)、MD(轻度落干,土壤水势保持-25 kPa)和SD(重度落干,土壤水势保持-50 kPa)3种土壤水分处理,研究了结实期土壤水分和氮素营养对水稻产量与品质的交互影响。在各施氮水平下,产量、糙米率、精米率和整精米率均以MD处理最高,垩白粒率和垩白度均以MD处理最低。在0N下,SD处理降低了产量、碾磨品质、外观品质和食味品质;在MN或HN下,SD处理的产量、碾磨品质、外观品质和食味品质与WW的差异不显著或显著优于WW。说明土壤水分和氮素营养对水稻产量和品质的影响存在着明显的互作效应,结实期土壤水势为-25 kPa、粒肥的施氮量为45 kg/hm2,稻米的品质较优、产量最高。  相似文献   

16.
On a Declo loam, rooting density, final yield and quality of potatoes (Solarium tuberosum cv. Russet Burbank) showed no significant differences among conventional planting, ripping along the row, or forced aeration 30 cm below the top of the row. There were significant relationships between oxygen diffusion rate (ODR) and soil moisture tension (matric potential) at the 30 and 40 cm depths, but these relationships were not significantly different among treatments. In a complementary experiment, sprinkler irrigations at negative soil water matric potentials of 30–40 (wet), 40–50 (intermediate) and 50–60 kPa (dry,i.e., 0.5–0.6 bar tension) produced no differences in total yield. However, the wet treatment gave significantly more knobby and undersized tubers < 113 g (4 oz.) and a lower percentage of U.S. #1 tubers than the intermediate and dry treatments. Premium sized tubers > 284 g (10 oz.) were significantly higher in the dry than in the wet treatment. Fertilizer N was applied periodically during the season and petiole NO3-N levels indicated adequate levels with no differences among treatments in either experiment. So much attention has been given to the effects of drought and high temperature stress on the quality of Idaho Russet Burbank potatoes, that some growers may now over-irrigate. Results of this research indicate that attention should also be directed to the effects of excess moisture on the size and quality of tubers.  相似文献   

17.
《Plant Production Science》2013,16(2):184-191
Abstract

In the afternoon when air humidity decreases, leaf photosynthetic rate (Pn) often declines in rice grown under irrigated conditions. To clarify the genotypic difference of Pn in response to humidity, we measured Pn and stomatal conductance (gs) for nine rice varieties with diverse genetic backgrounds, at various vapor pressure differences (VPD) and developmental stages. Pn and gs of all the varieties decreased with VPD increase from 1.0 to 2.3 kPa of VPD. The variety with high gs at low VPD exhibited a greater decline of gs with VPD increase than the variety with low gs, but cv. Takanari showed the highest gs under altered VPD conditions. Significant logarithmic relations were found between the decreased Pn and gs at the respective developmental stages, suggesting that gs is the dominant factor determining Pn and its response to VPD change. To explicate the effect of decreased gs on Pn, we analyzed the relations by using the model that accurately estimated the genotypic difference in Pn at a low VPD with gs and leaf nitrogen content per unit leaf area in the previous study. The model assuming that leaf internal conductance (gw) remains unchanged well explained the decreased Pn at high VPDs by gs change alone. The analysis also suggested the constancy of gw and carboxylation capacity at high VPD. It is concluded that the genotypic difference in the decrease of Pn at a high VPD is brought mainly by that in decreased gs, and the varieties with a high gs always exhibit a high Pn owing to their relatively high gs at either high or low VPD environments.  相似文献   

18.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

19.
Investigations were conducted to understand the direct effects of rising temperature and the host-mediated effects of elevated CO2 (eCO2) on Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera). This study involved i. the construction of life tables of S. litura at six constant temperatures viz., 20, 25, 27, 30, 33 and 35°C ± 0.5 °C reared on peanut (Arachis hypogaea L.) grown under eCO2 (550 ppm) concentration in open top chambers ii. Estimation of threshold temperatures and thermal constants and iii. Prediction of the pest scenarios during near and distant future climate change periods. Significantly lower leaf nitrogen, higher carbon and a higher relative proportion of carbon to nitrogen (C:N) were observed in peanut foliage grown under eCO2 over ambient CO2 (aCO2). The mean development time (days) of each stage, egg, larva, pupa, pre-oviposition and total life span decreased from 20 to 35 °C temperature on eCO2 foliage. The thermal requirement of S. litura from egg to egg (within the range of 20 °C–35 °C) was 538.5 DD on eCO2 as against 494.5 DD on aCO2 foliage. Finite (λ) and intrinsic rates of increase (rm), net reproductive rate (Ro), mean generation time (T) and doubling time (DT) of S. litura varied significantly with temperature and CO2 and were found to have quadratic relationships with temperature. The present results on life table parameters estimated by the bootstrap technique showed that the ‘rm’ values of S. litura on eCO2 foliage were higher than those in the literature indicating a significant influence of eCO2. The reduction of ‘T’ was noticed from a maximum of 50 days at 20 °C to minimum of 22 days at 35 °C and ‘λ’ which is the indicator of reproductive value of new eggs was highest at 35 °C and showed a negative relationship with temperature. The data on these life table parameters were plotted against temperature and two non-linear models developed for both CO2 conditions and used for predicting the pest scenarios. Prediction of pest scenarios based on PRECIS A1B emission scenario data at eleven peanut growing locations of the country during near future (NF) and distant future (DF) climate change periods showed an increase of ‘rm’ and ‘λ’ with varied ‘Ro’ and reduced ‘T’. The present results indicate that temperature and CO2 are vital in influencing the growth and life table parameters of S. litura and that pest incidence is likely to be higher in the future.  相似文献   

20.
《Field Crops Research》1999,63(2):179-184
Spring barley (Hordeum vulgare L.) is well adapted to the cool and short growing season of interior Alaska but little is known about thermal requirements for development and maturation of barley at such latitudes. Air temperature and barley development were monitored over the course of six growing seasons at Fairbanks (65°N) and Delta Junction (64°N), Alaska. These data were used to assess the base temperature (Tb) in the linear, thermal-unit model using the least variable, x-intercept, and regression coefficient methods. These methods indicated a range in Tb from 0°C to 1.5°C. At a Tb of 0°C, barley required nearly 1100°C d to mature. The phyllochron differed between early and late sowings and averaged 75°C d leaf−1. Sowing date appeared to influence the phyllochron during early vegetative growth due to differences in daylength as well as temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号