首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小麦新品种淮麦33的遗传构成分析   总被引:3,自引:2,他引:1  
【目的】解析高产广适小麦新品种淮麦33的遗传构成,探讨双亲烟农19和郑麦991对其产量相关性状的遗传贡献,为小麦品种改良及亲本选配提供依据。【方法】利用部分农艺及品质性状、高分子量谷蛋白亚基组成及覆盖小麦21条染色体的625个SSR分子标记分析淮麦33及其双亲的遗传构成;比对已知的产量性状相关QTL,分析双亲的产量相关区段对淮麦33的遗传贡献。【结果】淮麦33的每平方米穗数和千粒重均介于两亲本之间,穗粒数和小区产量均显著高于两亲本;与烟农19相比,其株高显著降低。淮麦33的高分子量谷蛋白亚基组成为(1、17+18和2+12),其中1和17+18亚基均来自于母本烟农19,2+12亚基来自于父本郑麦991。SSR分子标记分析表明,双亲对淮麦33的遗传贡献和理论值相比出现了较大偏离,淮麦33分别继承了烟农19和郑麦991两亲本73.9%和26.1%的遗传物质。淮麦33与烟农19具有较大的遗传相似度,遗传相似系数为0.78。在不同基因组和染色体水平上,双亲对淮麦33的遗传贡献率差异较大,其中,烟农19在A、B和D基因组水平的遗传贡献率均较高,分别为75.1%、69.4%和68.7%;除6A染色体外,烟农19在其他20条染色体上的遗传贡献率均高于郑麦991,其中在2A染色体上达到100%,在1A、3A、2B、3B和4B等5条染色体上均超过90%。在遗传距离大于5 c M的染色体区段中,淮麦33来源于烟农19和郑麦991的染色体区段分别有34个和7个,其中在2D染色体上来源于烟农19的染色体区段最多,在5A染色体上来源于郑麦991的区段最多。淮麦33有38个不同于双亲的特异位点,主要分布在1B、1D、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6B、6D和7A等15条染色体上。比对已知产量性状相关QTL,共发现10个产量相关区段,有6个来源于烟农19,分别位于1A、2D、3B、4B、4D和7A染色体上;3个来源于郑麦991,分别位于4A和5A染色体上;1个为淮麦33特异区段,位于6D染色体上。【结论】明确了小麦新品种淮麦33的遗传构成,其更多地继承了母本烟农19的遗传物质;发现淮麦33中来源于不同亲本的产量相关区段。  相似文献   

2.
小麦骨干亲本矮孟牛及其衍生后代遗传解析   总被引:2,自引:1,他引:2  
【目的】探讨中国重要的小麦骨干亲本之一矮孟牛的遗传构成及其特异标记位点(染色体区段)在衍生后代中的传递频率和遗传贡献率。【方法】利用覆盖小麦全基因组的836个DArT标记对矮孟牛的3个亲本进行标记筛选,获得来自3个亲本的330个特异标记,并分析特异标记位点(染色体区段)在41份后代材料的遗传频率和遗传贡献率。【结果】亲本牛朱特的遗传物质对后代影响的覆盖涉及面最广,遗传贡献率最大,对后代衍生品种不同染色体的贡献率范围为21.5%(7A)-85.4%(5D),对A、B、D这3个基因组的贡献率分别为44.4%、51.8%和52.0%,对后代衍生品种(系)的遗传贡献率平均为52.2%,表明国外引进种质对中国的小麦遗传改良起到了重要作用。矮丰3号对后代衍生品种不同染色体的贡献率范围为12.2%(5D)-70.7%(2A),对A、B、D 3个基因组的贡献率分别为46.2%、44.0%和23.8%,对后代衍生品种(系)的遗传贡献率平均为43.2%;孟县201对后代衍生品种不同染色体的贡献率范围为14.0%(1D)-68.3%(6D),对A、B、D 3个基因组的贡献率分别为34.9%、35.9%和42.7%,对后代衍生品种(系)的遗传贡献率平均为35.4%。并鉴定出骨干亲本中一些对后代有较大贡献、高频率传递的染色体位点。【结论】本研究探明了矮孟牛中特异标记位点在衍生后代中的传递频率和遗传贡献率,鉴定出许多与小麦重要性状紧密连锁、对衍生后代具有重要贡献的染色体位点,为解析骨干亲本易出品种的遗传基础,更好地创造和利用骨干亲本,培育小麦新品种提供参考。  相似文献   

3.
为研究小麦新品种信麦1168的遗传物质基础,利用小麦55K芯片对检测到的40 465个SNP标记分析双亲扬麦158和豫麦18对信麦1168的遗传贡献率。结果表明,母本扬麦158对信麦1168的遗传贡献率为54.71%,父本豫麦18对信麦1168的遗传贡献率为45.29%,扬麦158对信麦1168的贡献略大于豫麦18。从染色体水平看,扬麦158的1A、2A、4A、5A、7A、1B、2B、3B、4B、6B、1D、2D、3D、4D和7D等染色体对信麦1168的贡献率超过50%,在1B染色体上超过80%;豫麦18的3A、6A、5B、7B、5D、6D染色体对信麦1168的遗传贡献率均大于50%,在5D染色体上遗传贡献率超过70%。遗传贡献率分析结果表明,相同SNP位点分析和基因图谱分析结果高度一致。本研究揭示了信麦1168的遗传基础组成,以期为我国小麦种质资源保护、遗传研究与应用、亲本选配和种质资源创新提供科学依据。  相似文献   

4.
【目的】探讨亲本对黄淮麦区小麦新品种周麦23号的遗传贡献和周麦23号的遗传构成并筛选出其特异引物,用于检测周麦23号的品种真实性。【方法】利用覆盖小麦21条染色体的340个SSR标记对周麦23号及其亲本周麦13号、新麦9号进行简单重复序列(SSR)标记分析,解析亲本的遗传物质在周麦23号中传递频率和遗传贡献率。同时可以筛选到若干个周麦23号不同于任一亲本的引物,利用周麦23号的姊妹系、衍生品种对这些特异标记进行二次筛选,最终选择1-2个周麦23号的特异引物,并利用黄淮麦区的主推品种周麦22号、济麦22、矮抗58、郑麦366等14份材料对最终筛选的特异引物进行验证。【结果】双亲周麦13号和新麦9号对周麦23号的遗传贡献差异较大,周麦13号对周麦23号的遗传贡献率为63.04%,远高于新麦9号对周麦23号的遗传贡献率(36.96%)。双亲遗传物质在周麦23号的选育过程中发生了偏分离现象。在不同基因组和染色体水平上,亲本对周麦23号的遗传贡献率变化较大,母本周麦13号对周麦23号的遗传贡献率范围分别在23.1%(1B)-100% (4A、6A、3B、4B、6B、4D);父本新麦9号对周麦23号的遗传贡献率范围在0(4A、6A、3B、4B、6B、4D)-76.9%(1B)。从147个多态性标记中鉴定出周麦23号的7个特异位点,即Xwmc344Xbarc84Xwmc326Xwmc468Xwmc479、Xgwm428和Xcwm65。通过二次筛选得到1个周麦23号的特异引物Xcwm65,可用于鉴定周麦23号与黄淮麦区小麦品种的特异性,同时可以用于区分周麦23号的部分姊妹系(除A4、A5和A6以外)及其大部分衍生品种(除B7、B8和B12以外)。【结论】明确了2个亲本对周麦23号的遗传贡献率,掌握了周麦23号的遗传构成并绘制了基因型图,同时筛选出1个周麦23号的特异引物Xcwm65,可用于鉴定周麦23号的真实性。  相似文献   

5.
周麦32号是黄淮麦区通过审定的优质高产多抗型小麦新品种,为明确该品种的遗传基础,利用小麦55K SNP芯片在全基因组上对周麦32号及双亲矮抗58和周麦24号进行扫描分析。结果表明:矮抗58和周麦24号对周麦32号的遗传贡献率分别为73.75%和26.25%,不同染色体间亲本的遗传贡献率差异较大,在大多数染色体上,周麦32号的遗传物质更多地来源于矮抗58,而仅在1B、4B和6A染色体周麦24号的遗传贡献率超过矮抗58;在不同基因组水平上,矮抗58对周麦32号的遗传贡献率均高于周麦24号。亲本染色体遗传片段和标记基因注释分析也表明周麦32号继承了更多矮抗58的遗传物质,表现出明显的偏亲遗传。  相似文献   

6.
济麦262是新近育成的旱地小麦新品种,目前正在山东省大面积推广应用。本研究旨在明确其拔节期根系和地上部物质积累特性,揭示抗旱节水机理,为培育抗旱节水新品种提供理论指导和评价指标。于2017—2018年,在山东省农业科学院作物研究所济南试验基地,以济麦262及其亲本烟农19和临麦2号为试验材料,于管栽条件下进行雨养和充分浇水两个处理,比较3个品种拔节期根系特性、地上部生物量积累及其对供水的响应特征。结果表明,两种水分条件下3个品种拔节期根系总长度、总表面积和根尖总数在0~30、30~60、>90、60~90 cm土层范围内呈降低趋势;干旱胁迫降低了3个品种多数土层根系量及总根系量。充分浇水条件下,临麦2号和济麦262拔节期根系总长度、总表面积和根尖总数显著大于烟农19;而雨养条件下,济麦262则高于两个亲本,且深层(>90 cm)根系量也更大。此外,与两个亲本相比,济麦262拔节期地上部生物量对水分敏感性低,抗旱系数较高。雨养条件下拔节期根系总表面积与抗旱系数相关性较高,可作为评价品种抗旱性强弱的重要指标。  相似文献   

7.
以多聚核苷酸Oligo-p Ta535-1和Oligo-p Sc119.2-1为探针对济麦系列小麦进行双色荧光原位杂交(FISH)分析,结果发现,Oligo-p Ta535-1的FISH信号主要分布在A和D染色体上,而Oligop Sc119.2-1的FISH信号主要分布在B染色体上;济麦系列小麦的FISH位点较小麦中国春差异位点主要集中在染色体4A、6B、7B和1D染色体上,且多为Oligo-p Sc119.2-1信号;济南17的1B染色体着丝粒区Oligo-p Ta535-1信号、济麦20的1D短臂末端和2A长臂末端的Oligo-p Sc119.2-1信号、济麦262的5A长臂中间的Oligo-p Sc119.2-1信号可分别作为细胞学标签用于其身份识别。济麦系列小麦标准FISH核型的建立为利用染色体工程对其进行改良奠定了良好的细胞遗传学基础;FISH信号变异位点的类似性,说明济麦系列小麦的遗传基础相对狭窄,应在今后育种工作中注意选择与其亲缘关系相对较远的育种亲本进行组配。  相似文献   

8.
钟文 《油气储运》2011,(25):22-23
2009~2010年山东省小麦种植面积前十位的品种为济麦22、烟农21号、良星99、泰农18、良星66、山农15号、烟农24号、临麦4号、邯6172、临麦2号,其中,小麦种植面积最大的品种为济麦22,达到167万公顷。现将这些品种介绍如下:  相似文献   

9.
蚰包是山东省烟台市农科院选育的优良品种和重要的育种亲本材料。截止到2014年,已被省内25个育种单位广泛应用,育成了79个省级审(认)定品种和17个国家审定品种。育成的山农辐63获国家技术发明四等奖,鲁麦14、烟农19、济南17、济麦19、济麦20、济麦22获国家科技进步二等奖,鲁麦14、烟农19、济南16、济南17、济麦19、济麦22、鲁麦22获山东省科技进步一等奖;鲁麦7号、鲁麦21、烟农21、烟农24、济南17获山东省科技进步二等奖,为山东省和全国的小麦育种和生产做出了重要贡献。  相似文献   

10.
采用15K SNP芯片数据分析了15份黑、紫色小麦种质资源的遗传差异,利用HPLC法对15份小麦种质资源籽粒中的6种花青素含量进行测定,为黑、紫色小麦杂交育种亲本选择提供理论依据。结果表明,通过SNP芯片数据分析共获得7 116个有效SNP(单核苷酸多态性)位点,SNP多态性比率为77.12%,每条染色体上有128~682个SNP位点,在A、B、D染色体组中不均匀分布。各染色体组中SNP标记的数量表现为B>A>D,其中,3B染色体上SNP位点最多,4D染色体上SNP位点最少。黑、紫色小麦种质资源籽粒中总花青素含量均显著高于普通小麦,不同种质资源籽粒中花青素含量差异很大。紫色小麦、卫辉黑小麦和周黑麦1号籽粒中花青素种类丰富而且总含量高于其他种质资源。蜀紫麦1801、特色小麦1、特色小麦2、漯珍1号、豫州黑麦1号和豫州黑麦2号籽粒中总花青素含量较低。15份黑、紫色小麦种质资源可分为Ⅰ、Ⅱ、Ⅲ3类,3类种质资源籽粒中花青素含量差异很大,表现为Ⅱ>Ⅲ>Ⅰ,而且遗传差异大的种质资源间花青素含量差异大。综上,紫色小麦、卫辉黑小麦和周黑麦1号总花青素含量高,可与遗传相似度低的...  相似文献   

11.
小麦新品种川麦104的遗传构成分析   总被引:2,自引:0,他引:2  
【目的】解析突破性高产小麦新品种川麦104的遗传构成,探讨双亲川麦42和川农16对其高产特性的贡献。【方法】利用已构建的遗传连锁图谱上的176个SSR和683个DArT标记对川麦104及其亲本进行分析,了解川麦104的遗传构成;根据已定位到的产量性状QTL,分析来源于双亲的染色体区段对川麦104产量相关性状的贡献。【结果】在川麦104的双亲具有差异的859个多态位点中(22个位点缺失),有522个位点上的等位基因来源于川麦42,315个位点上的等位基因来源于川农16;川麦104更多地继承了川麦42的遗传成分(60.8%);川麦104中来源于双亲的遗传位点在A、B和D基因组分布不同,来源于川麦42的等位位点在A、B和D基因组所占比例分别为55.00%、60.20%和67.27%;川麦104中来源于双亲的等位位点在21条染色体上的分布也不同,来源于川麦42的等位位点主要分布于3A、5A、7A、1B、5B、7B、3D、4D、5D和7D染色体上,来源于川农16的等位位点主要分布于4A、3B、4B、6B、1D、2D和6D染色体上。川麦104来源于双亲的染色体区段(遗传距离大于5 cM)共68个,总长度为3 089.6 cM;来源于川麦42和川农16的染色体区段分别为36和32个,来源于川麦42的染色体区段主要分布在3D、5D、7A、7B和7D染色体上,来源于川农16的染色体区段主要分布在3B、4B和6D染色体上;在A和D基因组川麦104来源于川麦42的染色体区段比川农16的多,B基因组中来源于川农16的染色体区段比川麦42的多。在1B、1D、2B、4A、4D、5A、5B、5D和7A染色体上,9个来源于川麦42的染色体区段以及5个来源于川农16的染色体区段富集了与产量性状相关的QTL,其中,在1BS和4A染色体上来源于川麦42的染色体区段携带增加穗粒数的QTL等位位点;在1D、2B和4A染色体上来源于川农16的染色体区段携带增加单位面积穗数的QTL等位位点;5B染色体上来源于川麦42的染色体区段和4A、4D染色体上来源于川农16的染色体区段均携带增加千粒重的QTL等位位点,这些QTL的聚合对川麦104的产量三因素有增效作用。【结论】小麦新品种川麦104的高穗粒数特性来源于川麦42,多穗数特性来源于川农16,其千粒重特性双亲均有贡献,表明双亲的正效产量性状QTL重组是川麦104的高产遗传基础。  相似文献   

12.
【目的】了解小麦骨干亲本小偃6号及其衍生品种(系)间的遗传差异,以及小偃6号对各代衍生品种的遗传贡献。【方法】利用63对分布于小麦21条染色体上的SSR引物对小偃6号及其子1代到子6代的80个衍生品种(系)进行UPGMA聚类分析,以各衍生品种与小偃6号共有位点数占总位点数的百分比表示小偃6号对各世代的遗传贡献。【结果】63对SSR引物在81份材料中共检测到175个等位变异,等位变异数目为1~6,平均2.78个;SSR引物多态性信息含量的变化幅度为0.067 4~0.836 4,平均值为0.480 4;品种间遗传相似系数变化幅度为0.521~0.931,平均值为0.664,在遗传相似系数为0.658处将81份材料分为7类,聚类结果与系谱较吻合;小偃6号对其衍生子1代、子2代、子3代、子4代的平均遗传贡献率为50.32%,47.54%,46.35%,44.83%;在各世代中A、B和D基因组间遗传贡献率整体表现为DAB。【结论】小偃6号与其衍生品种(系)存在一定的遗传差异;小偃6号在前4个世代对各世代的遗传贡献率随世代的增加逐渐下降,对衍生品种(系)的D基因组遗传贡献较大。  相似文献   

13.
山东省当前主栽小麦品种春冬性强弱研究   总被引:3,自引:1,他引:2  
为了明确山东省当前小麦主栽品种春冬性强弱,选择19个生产中应用面积较大的主栽品种,以春小麦辽春18号为对照,“惊蛰”后在济宁进行田间分期播种,研究其春冬性强弱并进行两级多次比较和排序。结果表明:辽春18号(春小麦)〉济麦20〉潍麦8〉济麦22〉良星99〉烟农15〉济南17〉烟5286〉烟农24〉济麦19〉泰山23〉济麦16〉淄麦12〉临麦2号、邯6172〉山农664、济宁12〉泰山9818、烟农19〉济麦21,排序愈在前春性愈强,愈在后冬性愈强。  相似文献   

14.
【目的】小麦品种川麦44不仅本身具有高产、稳产、广适等特性,而且以其为亲本已选育审定新品种11个,是小麦育种的一个重要亲本。明确川麦44的遗传特性,鉴定其含有的重要基因或QTL位点,为更好地利用川麦44选育新品种提供理论支撑。【方法】利用荧光原位杂交明确小麦-外源易位对川麦44及其衍生品种的影响以及川麦44及其衍生品种在染色体层面的遗传规律。利用660K SNP芯片数据分析川麦44对其衍生品种的遗传贡献,明确衍生品种中来源于川麦44的高传递率区段。利用已知的小麦基因功能标记及QTL连锁标记,对川麦44中有利于育种的重要基因位点进行鉴定。【结果】细胞学鉴定表明川麦44不含四川小麦品种中常见的2条易位染色体6VS/6AL和1RS/1BL。其衍生品种中,仅昌麦32和昌麦34含1对1RS/1BL易位染色体,其余品种不含有小麦-外源易位染色体。系谱分析表明,昌麦32和昌麦34的易位染色体遗传自另外一个杂交亲本——昌麦19。1RS/1BL易位的导入可能是昌麦32和昌麦34表现为弱筋的原因之一。除了小麦-外源易位染色体,多个染色体的核型在川麦44及其10个衍生品种中表现出多态性。其中,4A染色体有2种类型,80%的衍生品种与川麦44相同核型相同;5A染色体有4种类型,与川麦44相同的频率为40%;6B染色体有2种类型,与川麦44相同的频率为40%,7B染色体有2种类型,与川麦44相同的频率为40%。660K SNP芯片分析共鉴定到1 106个分布于川麦44所有染色体上的高遗传率区段,平均长度为1.57 Mb。从基因组层面来看,B基因组的区段总长度和总数均最大。从不同染色体来看,区段最长的3条为别为4A、2B和5B,区段数最多的3条染色体分别为4A、2B和3B。利用61个已知的小麦基因功能标记及13个产量相关QTL连锁SNP标记分析川麦44及其衍生品种,再与之前获得的川麦44高传递率区段对比,发现有9个基因的标记和3个QTL位点标记锚定在川麦44高传递率区段内,这些基因被认为是潜在的川麦44高被选择基因。依据功能标记或连锁标记的等位类型推断,其中2个功能基因TaSdrNAM-A1和3个QTL位点QTKW.sicau-2AS.1QTKW.Sicau-4ALQSL.sicau-5AL.2可能是川麦44携带的重要优势等位基因或位点,在培育衍生品种过程中被优先选择保留。5个基因或QTL位点分别对穗发芽、有效分蘖数、千粒重和穗长4个性状具有正向效应。【结论】重要育种亲本川麦44基因组片段在衍生品种中的长度短,具有较高的遗传配合力,易于与不同的同源染色体重组,不易导致连锁累赘问题。TaSdNAM-A1QTKW.sicau-2AS.1QTKW.Sicau-4ALQSL.sicau-5AL.2是利用川麦44育种的5个重要靶基因位点,可加强对其在分子标记辅助育种中应用。  相似文献   

15.
为明确不同潜力小麦品种干物质积累特性与产量的差异,本试验在大田条件下以烟农1212、济麦22和济麦229为材料,研究3个品种群体动态变化和干物质积累、转运、分配以及籽粒产量的差异。结果表明:①越冬期至拔节期小麦群体总茎数表现为济麦22、济麦229烟农1212,开花期和成熟期群体总茎数3个品种间无显著差异;分蘖成穗率表现为烟农1212济麦22、济麦229。②越冬期至拔节期烟农1212和济麦22干物质积累量无显著差异,均显著高于济麦229;开花期和成熟期为烟农1212济麦22济麦229。③开花后干物质在籽粒中的分配量为烟农1212济麦22济麦229;开花后干物质对籽粒的贡献率为烟农1212济麦22、济麦229。④品种间单位面积穗数无显著差异,穗粒数表现为烟农1212济麦22、济麦229,千粒重为烟农1212、济麦22济麦229;烟农1212的籽粒产量最高,达到10 893.44 kg·hm~(-2)。烟农1212品种无效分蘖少,生育后期干物质积累能力强,收获指数高,获得最高产量。  相似文献   

16.
为了明确当前山东省小麦主推品种的春化表现,以应对秋冬气候变暖,依品种春化特性科学确定始播期,从秋种源头上预防冬前旺长和越冬期冻害,选择了19个小麦主推品种,以春麦辽春18为CK,采用干种子田间春季分期播种和室内人工春化晚春田间定植2种方法,研究了19个主推品种的春化弱强和排序,并对其春化类型进行了划分。结果表明:按春化从弱到强依次排序为辽春18→济麦20→济宁16→潍麦8→济麦22→良星99→济南17→邯6172→烟5286→山农664→济麦19→烟农24→济宁12→烟农15→泰山23、淄麦12→临麦2和泰山9818→济麦21→烟农19。烟农19和济麦21为冬型,其余17个冬麦品种均为半冬型。半冬型品种占绝大多数,冬型品种很少。在半冬型品种中,排序越在前,春化越弱;排序越在后,春化越强。  相似文献   

17.
优质强筋小麦品种比较试验研究   总被引:2,自引:0,他引:2  
进行了优质强筋小麦品种比较试验,结果表明:烟农19和济麦20表现为高产、优质、多抗、广适,适宜在丰县大面积推广,而藁8901、临优145等品种表现一般,皖麦38表现较差,产量低,易倒伏,不适宜在丰县种植。  相似文献   

18.
小麦种质烟农74(11)是20世纪70年代烟台农业科学院选育的小麦育种中间材料,衍生了鲁麦14、鲁麦13、烟农19等多个大面积推广品种,并以这些品种为育种亲本,选育出多个国审小麦品种,是近期山东省小麦育种的基础。选用烟农74(11)种质衍生品种(系)62份、非烟农74(11)种质衍生品种(系)58份,共计120份实验材料,采用小麦90K芯片,分析了供试材料的遗传关系。共获得26 026个有效SNP位点,其中A、B、D基因组各占32.17%、40.69%和7.64%。供试群体多态性信息含量(PIC)为0.18~0.31,平均为0.25,低于SSR标记揭示的遗传多样性。分析了全部材料组(组Ⅰ)和烟农74(11)衍生材料组(组Ⅱ)遗传相似性系数,发现组Ⅰ材料间的遗传相似性系数在0.61~0.70的占59.44%、0.71~0.80的占32.98%、≥0.91的占0.80%;组Ⅱ的遗传相似性系数在 0.61~0.70的占26.77%、0.71~0.80的占53.22%、0.81~0.90的占17.26%,≥0.91的占2.75%,这表明烟农74(11)种质衍生后代间的遗传关系比较狭窄,需要拓宽遗传基础。此外,对几个经典小麦杂交组合进行了遗传相似性系数分析,发现子代和上缘亲本间的遗传相似性系数为0.68~0.87,平均为0.79;姊妹系间为0.84~0.87,父母本间为0.65~0.71。通过经典组合分析并结合当前小麦遗传关系狭窄的现实,建议在中短期育种目标中,双亲遗传相似性系数最好控制在0.8以下;在中长期育种目标中,双亲遗传相似性系数最好控制在0.7以下。  相似文献   

19.
普通小麦籽粒过氧化物酶活性全基因组关联分析   总被引:1,自引:0,他引:1  
【目的】小麦籽粒过氧化物酶(peroxidase,POD)活性对面制品加工品质有重要影响,发掘控制籽粒POD活性重要位点,并筛选其候选基因,为小麦品质的改良奠定基础。【方法】以151份黄淮冬麦区和82份北部冬麦区品种(系)为材料,分别利用来自于小麦90 K SNP芯片的18 189和18 417个高质量SNP标记,对POD活性进行全基因组关联分析(genome-wide association study,GWAS)。【结果】供试材料中POD活性表现出广泛的表型变异和多样性,黄淮麦区材料的POD活性变异系数为15.4%—21.8%,遗传力为0.79,北部麦区材料的POD活性变异系数为15.0%—19.9%,遗传力为0.82。相关性分析表明,不同环境之间材料的POD活性表现出显著的相关性,黄淮麦区相关系数为0.46—0.89(P0.0001),北部麦区相关系数为0.50—0.87(P0.0001)。多态性信息含量PIC值为0.09—0.38,最小等位基因频率MAF值为0.05—0.5。群体结构分析表明,黄淮麦区与北部麦区2个自然群体结构简单,均可分为3个亚群。GWAS分析结果表明,在黄淮冬麦区材料中共检测到20个与POD活性显著关联的位点(P0.001),分布在1A、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6A、6D和7A染色体上,单个位点可解释7.8%—13.3%的表型变异。在北部冬麦区材料中共检测到20个与POD活性显著关联(P0.001)的位点,分布在1A、1B、1D、2A、2B、2D、3A、3B、4B、6A、6B、7A、7B和7D染色体上,单个位点可解释14.4%—23.2%的表型变异。加性回归分析表明,随着优异等位基因数量的增多,小麦籽粒POD活性越高。在发现的所有POD活性相关位点中,2个位点在黄淮麦区和北部麦区材料中均能检测到且稳定遗传,可将其转换为STARP(semi-thermal asymmetric reverse PCR)或CAPS标记,以应用于分子标记辅助育种。获得3个与POD活性有关的候选基因,分别编码磷酸甘露糖变位酶(PMM-D1)、辣根过氧化物酶(PER40)和烷基氢过氧化物还原酶(F775_31640)。【结论】黄淮麦区与北部冬麦区2个自然群体遗传多样性丰富,群体结构简单,适用于全基因组关联分析。在2个自然群体中分别发现20个POD活性位点,并在显著相关的位点区域内筛选到3个候选基因。含有越多优异等位变异的材料其POD活性越高。  相似文献   

20.
江苏淮北地区13个主导小麦品种产量构成因素分析   总被引:4,自引:0,他引:4  
利用近10年来江苏省淮北地区主要推广的13个小麦品种,针对影响小麦产量的单位面积有效穗数、穗粒数、千粒质量产量3要素,通过方差分析、相关分析和通径分析,探讨产量3要素之间的相互关系及其对产量的影响。方差分析结果表明,不同小麦品种的产量及其产量构成因素存在显著性差异。产量较高的小麦品种为矮抗58、连麦6号、淮麦20、济麦22,较低的小麦品种为徐麦33、徐麦30;单位面积有效穗数较高的小麦品种为淮麦22、连麦6号、淮麦20、烟农19,较低的小麦品种为郑麦9023、矮抗58、淮麦33;穗粒数较高的小麦品种为矮抗58、淮麦33、连麦6号、济麦22、烟农19、烟农5158,最低的小麦品种为徐麦99;千粒质量较高的小麦品种为郑麦9023、矮抗58、淮麦20、徐麦99,较低的小麦品种为淮麦33、保麦1号、烟农5158。相关性分析结果表明,单位面积有效穗数、穗粒数、千粒质量与小麦产量均呈正相关,其相关性大小依次为穗粒数有效穗数千粒质量;产量3要素之间呈负相关关系,其中有效穗数和千粒质量的负相关系数绝对值最大,为0.510。通径分析结果与相关性分析结果吻合,产量3要素对产量的贡献大小依次为穗粒数有效穗数千粒质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号