首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Elk, fire and climate have influenced aspen populations in the Rocky Mountains, but mostly subjective studies have characterized these factors. A broad-scale perspective may shed new light on the status of aspen in the region. We collected field measurements of aspen (Populus tremuloides Michx.) patches encountered within 36 randomly located belt transects in 340 km2 of Rocky Mountain National Park, Colorado, to quantify the aspen population. Aspen covered 5.6% of the area in the transects, much more than expected based on previously collected remotely sensed data. The distribution and structure of aspen patches were highly heterogeneous throughout the study area. Of the 123 aspen patches encountered in the 238 ha surveyed, all but one showed signs of elk browsing or had conifer species mixed with the aspen stems. No significant difference occurred in aspen basal area, density, regeneration, browsing of regeneration and patch size, between areas of concentrated elk use (elk winter range) and areas of dispersed elk use (elk summer range). Two-thirds of the aspen patches were mixed with conifer species. We concluded that the population of aspen in our study area is highly variable in structure and that, at a landscape-scale, evidence of elk browsing is widespread but evidence of aspen decline is not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Hansen  A.J.  Rotella  J.J.  Kraska  M.P.V.  Brown  D. 《Landscape Ecology》2000,15(6):505-522
Landscapes are often heterogeneous in abiotic factors such as topography, climate, and soil, yet little is known about how these factors may influence the spatial distribution of primary productivity. We report estimates of aboveground net primary productivity (ANPP) in 90 sample stands stratified by cover type and elevation class, and use the results to predict ANPP across a portion of the Greater Yellowstone Ecosystem. Tree ANPP was estimated by sampling tree density by species and diameter classes and estimating average annual diameter increment by tree coring. Biomass for current tree diameter and past tree diameter were calculated by species and diameter class for each stand using the dimension analysis software BIOPAK. Shrub ANPP was estimated by calculating current biomass from basal area using BIOPAK and dividing by the assumed average life span of the shrubs. Clipping at the end of the growing season was used to estimate herb ANPP. Differences in ANPP among cover types and elevation classes were examined with analysis of variance. Multiple regression was used to examine relationships between ANPP, and soil parent material, topography, and cover type. The best regression model was used to predict ANPP across the study area.We found ANPP was highest in cottonwood, Douglas-fir, and aspen stands, intermediate in various seral stages of lodgepole pine, and lowest in grassland and sagebrush cover types. Parent material explained significant variation in ANPP in mature and old-growth lodgepole pine stands, with rhyolite ash/loess being the most productive parent material type. ANPP decreased with increasing elevation in most cover types, possibly because low temperatures limit plant growth at higher elevations in the study area. ANPP was not related to elevation in mature and old-growth lodgepole pine stands, due to relatively rapid growth of subalpine fir at higher elevations.A regression model based on cover type and elevation explained 89% of the variation in ANPP among the sample stands. This model was used to generate a spatially continuous surface of predicted ANPP across the study area. The frequency distribution of predicted ANPP was skewed towards lower levels of ANPP, and only 6.3% of the study area had a predicted ANPP level exceeding 4500 kg/ha/yr. Patches high in predicted ANPP were primarily at lower elevations, outside of Yellowstone National Park, and near the national forest/private lands boundary. These patterns of ANPP may influence fire behavior, vertebrate population dynamics, and other ecological processes. The results reinforce the need for coordinated management across ownership boundaries in the Greater Yellowstone Ecosystem.  相似文献   

3.
Suzuki  Kuni  Suzuki  Harumi  Binkley  Dan  Stohlgren  Thomas J. 《Landscape Ecology》1999,14(3):231-237
Elk (Cervus elaphus) populations in Rocky Mountain National Park are higher than at any time in the past century, and heavy browsing by elk may interfere with aspen (Populus tremuloides Michx.) regneration. We used aerial photographs to identify all aspen stands within Rocky Mountain National Park, and all aspen stands within the elk winter range range (defined as 2400 to 2800 m elevation) in three portions of the adjacent Roosevelt National Forest. From this population of aspen stands, we randomly selected 57 stands for evaluation of aspen regeneration. Stands that contained stems younger than 30 years and taller than 2.5 m tall were classified as regenerating successfully. Only 20% of the aspen stands in Estes Valley contained a cohort of regenerating aspen stems, whereas 45-to-75% of aspen stands across the larger landscape of the Front Range had regenerating cohorts of aspen. Within the elk winter range of the Roosevelt National Forest, 13 of 17 aspen stands were regenerating. In the elk winter range on the east side of the Park but outside of Estes Valley, 11 of 15 aspen stands were regenerating successfully. Only a few aspen stands exist in the elk winter range on the western side of the Park, and none of the five aspen stands sampled in Kawuneeche Valley had a regenerating cohort. The lack of regeneration in Kawuneeche Valley may result from locally heavy elk use in both winter and summer. In the summer elk range at higher elevations in the Park (2800 to 3200 m), 16 of 23 stands had regenerated. At landscape scales, all locations outside of the heavily impacted Estes Valley averaged about two cohorts/stand that regenerated after the mid-1960s. All stands that lacked a regenerating cohort showed evidence of moderate-to-severe damage from elk browsing of stems. No regenerating stands showed evidence of severe browsing. We conclude that at landscape scales, regeneration within aspen stands is very common across the Front Range, except in local areas of the highest elk use where little regeneration has occurred in the past 30 years.  相似文献   

4.
Fire regime characteristics of high-elevation forests on the North Rim of the Grand Canyon, Arizona, were reconstructed from fire scar analysis, remote sensing, tree age, and forest structure measurements, a first attempt at detailed reconstruction of the transition from surface to stand-replacing fire patterns in the Southwest. Tree densities and fire-/non-fire-initiated groups were highly mixed over the landscape, so distinct fire-created stands could not be delineated from satellite imagery or the oldest available aerial photos. Surface fires were common from 1700 to 1879 in the 4,400 ha site, especially on S and W aspects. Fire dates frequently coincided with fire dates measured at study sites at lower elevation, suggesting that pre-1880 fire sizes may have been very large. Large fires, those scarring 25% or more of the sample trees, were relatively infrequent, averaging 31 years between burns. Four of the five major regional fire years occurred in the 1700s, followed by a 94-year gap until 1879. Fires typically occurred in significantly dry years (Palmer Drought Stress Index), with severe drought in major regional fire years. Currently the forest is predominantly spruce-fir, mixed conifer, and aspen. In contrast, dendroecological reconstruction of past forest structure showed that the forest in 1880 was very open, corresponding closely with historical (1910) accounts of severe fires leaving partially denuded landscapes. Age structure and species composition were used to classify sampling points into fire-initiated and non-fire-initiated groups. Tree groups on nearly 60% of the plots were fire-initiated; the oldest such groups appeared to have originated after severe fires in 1782 or 1785. In 1880, all fire-initiated groups were less than 100 years old and nearly 25% of the groups were less than 20 years old. Non-fire-initiated groups were significantly older (oldest 262 years in 1880), dominated by ponderosa pine, Douglas-fir, or white fir, and occurred preferentially on S and W slopes. The mixed-severity fire regime, transitioning from lower-elevation surface fires to mixed surface and stand-replacing fire at higher elevations, appeared not to have been stable over the temporal and spatial scales of this study. Information about historical fire regime and forest structure is valuable for managers but the information is probably less specific and stable for high-elevation forests than for low-elevation ponderosa pine forests.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

5.
Climate and topography are two important controls on spatial patterns of fire disturbance in forests globally, via their influence on fuel moisture and fuel production. To assess the influences of climate and topography on fire disturbance patterns in a temperate forest region, we analyzed the mapped perimeters of fires that burned during 1930–2003 in two national parks in the eastern United States. These were Great Smoky Mountains National Park (GSMNP) in the southern Appalachian Mountains and Shenandoah National Park (SNP) in the central Appalachian Mountains. We conducted GIS analyses to assess trends in area burned under differing climatic conditions and across topographic gradients (elevation, slope position, and aspect). We developed a Classification and Regression Tree model in order to further explore the interactions between topography, climate, and fire. The results demonstrate that climate is a strong driver of both spatial and temporal patterns of wildfire. Fire was most prevalent in the drier SNP than the wetter GSMNP, and during drought years in both parks. Topography also influenced fire occurrence, with relatively dry south-facing aspects, ridges, and lower elevations burning most frequently. However, the strength of topographic trends varied according to the climatic context. Weaker topographic trends emerged in the drier SNP than GSMNP, and during low-PDSI (dry) years than high-PDSI (wet) years in both parks. The apparent influence of climate on the spatial patterning of fire suggests a more general concept, that disturbance-prone landscapes exhibit weaker fine-scale spatial patterning of disturbance than do less disturbance-prone landscapes.  相似文献   

6.
Not all wildfire ignitions result in burned areas of a similar size. The aim of this study was to explore whether there was a size-dependent pattern (in terms of resulting burned area) of fire ignitions in Portugal. For that purpose we characterised 71,618 fire ignitions occurring in the country in the period 2001–2003, in terms of population density in the local parish, land cover type and distance to roads. We then assigned each ignition into subsets of five classes according to the resulting burned area: >5 ha, >50 ha, >100 ha, >250 ha, >500 ha. The probability of an ignition resulting in different burned area classes was modelled using binary logistic regression, and the relative importance, strength and signal (positive or negative) of the three explanatory variables compared across the models obtained for the different classes. Finally, we explored the implications of land cover and population density changes during the period 1990–2000 in Portugal for the likelihood of ignitions resulting in wildfires >500 ha. Population density was the more important variable explaining the resulting burned area, with the probability of an ignition resulting in a large burned area being inversely related to population density. In terms of land cover, ignitions resulting in large burned areas were more likely to occur in shrubland and forest areas. Finally, ignitions farther away from roads were more likely to result in large burns. The current land cover trends (decrease of agricultural land and increase in shrublands) and population trends (decline in population densities except near the coast) are increasing the probability that ignitions will result in large fires in vast regions of the country.  相似文献   

7.
Loss of aspen (Populus tremuloides) has generated concern for aspen persistence across much of the western United States. However, most studies of aspen change have been at local scales and our understanding of aspen dynamics at broader scales is limited. At local scales, aspen loss has been attributed to fire exclusion, ungulate herbivory, and climate change. Understanding the links between biophysical setting and aspen presence, growth, and dynamics is necessary to develop a large-scale perspective on aspen dynamics. Specific objectives of this research were to (1) map aspen distribution and abundance across the Greater Yellowstone Ecosystem (GYE), (2) measure aspen change in the GYE over the past 50 years (3) determine if aspen loss occurs in particular biophysical settings and (4) investigate the links between biophysical setting and aspen presence, growth, and change in canopy cover. We found that aspen is rare in the GYE, occupying 1.4% of the region. We found an average of 10% aspen loss overall, much lower than that suggested by smaller-scale studies. Aspen loss corresponded with biophysical settings with the lowest aspen growth rates, where aspen was most abundant. The highest aspen growth rates were at the margins of its current distribution, so most aspen occur in biophysical settings less favorable to their growth.  相似文献   

8.
Agee  James K. 《Landscape Ecology》2003,18(8):725-740
The historical range of variability (HRV) has been suggested as a coarse filter approach to maintain ecosystem sustainability and resiliency. The historical range of variability in forest age structure for the central eastern Cascade Range in Washington State, USA was developed from historical fire return intervals and the manner in which fire acted as both cyclic and stochastic processes. The proportions of seven forest structural stages calculated through these processes were applied to the area of each forest series within the central eastern Cascades landscape. Early successional forest stages were more common in high elevation forest than low elevation forest. The historical proportion of old growth and late successional forest varied from 38 to 63 percent of the forested landscape. These process-based estimates are consistent with those developed from forest structural information. HRV is a valuable planning tool for ecosystem conservation purposes, but must be applied to real landscapes with consideration of both temporal and spatial scale. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Regional variation in nitrogen (N) deposition increases plant productivity and decreases species diversity, but landscape- or local -scale influences on N deposition are less well-known. Using ion-exchange resin, we measured variation of N deposition and soil N availability within Elk Island National Park in the ecotone between grassland and boreal forest in western Canada. The park receives regionally high amounts of atmospheric N deposition (22 kg ha−1 yr−1). N deposition was on average higher ton clay-rich luvisols than on brunisols, and areas burned 1–15 years previously received more atmospheric N than unburned sites. We suggest that the effects of previous fires and soil type on deposition rate act through differences in canopy structure. The magnitude of these effects varied with the presence of ungulate grazers (bison, moose, elk) and vegetation type (forest, shrubland, grassland). Available soil N (ammonium and nitrate) was higher in burned than unburned sites in the absence of grazing, suggesting an effect of deposition. On grazed sites, differences between fire treatments were small, presumably because the removal of biomass by grazers reduced the effect of fire. Aspen invades native grassland in this region, and our results suggest that fire without grazing might reinforce the expansion of forest into grassland facilitated by N deposition.  相似文献   

10.
Human trampling destroys seedlings and saplings without regard to species in urban park forests and the addition of deer browsing compounds the losses. The unexamined research question is: what is the effect of white deer browsing in the absence of human trampling? Radnor Lake State Natural Area, Nashville, TN, USA has been protected from off-pathway human transit since 1973 and white-tailed deer (Odocoileus virginianus Zimmerman) were restored to the Natural Area in 1980. From 1976 to 2007, a plot with tagged trees in the mesic slope forest showed the tree population for 16 species decreased, two remained stable, and one increased. The pattern of increase for sugar maple (Acer saccharum Marsh) was 57 new trees added but 46 trees were lost, which appears as a population increase from 1976 to 1996 and a decrease in 2007. In all five forest communities, the total tree stems per ha declined from 1974 to 2008. During the period 1994–2008, O. virginianus over browsing decimated the seedling population of all species and caused the total for stems per ha for saplings to become smaller than the total stems per ha for trees in each community except the ravine forest, which had the greatest loss of trees. The only consistent change in trees across the five communities when comparing 1974–2008 was the significant tree importance value increase for A. saccharum. The conflicting significant changes for major species, other than A. saccharum, across the Natural Area forest communities informs management for other urban park forests—browsing by O. virginianus results in increased numbers for trees and saplings in the communities the species are well adapted to grow and reproduce in and fewer trees and saplings in the communities with environmental conditions that are not well suited to the species.  相似文献   

11.
Habitat for wide-ranging species should be addressed at multiple scales to fully understand factors that limit populations. The marbled murrelet (Brachyramphus marmoratus), a threatened seabird, forages on the ocean and nests inland in large trees. We developed statistical relationships between murrelet use (occupancy and abundance) and habitat variables quantified across many spatial scales (statewide to local) and two time periods in California and southern Oregon, USA. We also addressed (1) if old-growth forest fragmentation was negatively associated with murrelet use, and (2) if some nesting areas are more important than others due to their proximity to high quality marine habitat. Most landscapes used for nesting were restricted to low elevation areas with frequent fog. Birds were most abundant in unfragmented old-growth forests located within a matrix of mature second-growth forest. Murrelets were less likely to occupy old-growth habitat if it was isolated (> 5 km) from other nesting murrelets. We found a time lag in response to fragmentation, where at least a few years were required before birds abandoned fragmented forests. Compared to landscapes with little tono murrelet use, landscapes with many murrelets were closer to the ocean's bays, river mouths, sandy shores, submarine canyons, and marine waters with consistently high primary productivity. Within local landscapes (≤ 800ha), inland factors limited bird abundance, but at the broadest landscape scale studied (3200 ha), proximity to marine habitat was most limiting. Management should focus on protecting or creating large, contiguous old-growth forest stands, especially in low-elevation areas near productive marine habitat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We investigated aspen (Populus tremuloides)regeneration in the Gros Ventre River Valley, the National Elk Refuge and a small part of Grand Teton National Park, Wyoming, USA to see if elk (Cervus elaphus) browsing was as damaging as previously thought. We conducted a landscape-scale survey to assess aspen regeneration across gradients of wintering elk concentrations using 68 randomly selected aspen stands in the 1090 km2 study area. Forty-four percent of the stands sampled supported some newer regeneration that had reached the canopy. There were no significant differences of regeneration across elk winter range classification (p=0.25) or distance from feedgrounds (p=0.96). However, a multiple linear regression found that the concentration of elk was one of several important predictors of successful aspen regeneration (p=0.005, R 2=0.36). Our results suggest that stand-replacing regeneration occurs across the landscape at a variety of elk densities despite some trends of reduced regeneration under greater elk concentrations. We propose that high spatial and temporal variation and scattered patches of successful aspen regeneration characterize aspen persistence between periods of episodic regeneration and recruitment.  相似文献   

13.
The complexity inherent in variable, or mixed-severity fire regimes makes quantitative characterization of important fire regime attributes (e.g., proportion of landscape burned at different severities, size and distribution of stand-replacing patches) difficult. As a result, there is ambiguity associated with the term ‘mixed-severity’. We address this ambiguity through spatial analysis of two recent wildland fires in upper elevation mixed-conifer forests that occurred in an area with over 30 years of relatively freely-burning natural fires. We take advantage of robust estimates of fire severity and detailed spatial datasets to investigate patterns and controls on stand-replacing patches within these fires. Stand-replacing patches made up 15% of the total burned area between the two fires, which consisted of many small patches (<4 ha) and few large patches (>60 ha). Smaller stand-replacing patches were generally associated with shrub-dominated (Arctostaphylos spp. and Ceanothus spp.) and pine-dominated vegetation types, while larger stand-replacing patches tended to occur in more shade-tolerant, fir-dominated types. Additionally, in shrub-dominated types stand-replacing patches were often constrained to the underlying patch of vegetation, which for the shrub type were smaller across the two fire areas than vegetation patches for all other dominant vegetation types. For white and red fir forest types we found little evidence of vegetation patch constraint on the extent of stand-replacing patches. The patch dynamics we identified can be used to inform management strategies for landscapes in similar forest types.  相似文献   

14.
Connectivity of forest fuels and surface fire regimes   总被引:8,自引:0,他引:8  
Miller  Carol  Urban  Dean L. 《Landscape Ecology》2000,15(2):145-154
The connectivity of a landscape can influence the dynamics of disturbances such as fire. In fire-adapted ecosystems, fire suppression may increase the connectivity of fuels and could result in qualitatively different fire patterns and behavior. We used a spatially explicit forest simulation model developed for the Sierra Nevada to investigate how the frequency of surface fires influences the connectivity of burnable area within a forest stand, and how this connectivity varies along an elevation gradient. Connectivity of burnable area was a function of fuel loads, fuel moisture, and fuel bed bulk density. Our analysis isolated the effects of fuel moisture and fuel bed bulk density to emphasize the influence of fuel loads on connectivity. Connectivity was inversely related to fire frequency and generally increased with elevation. However, certain conditions of fuel moisture and fuel bed bulk density obscured these relationships. Nonlinear patterns in connectivity across the elevation gradient occurred as a result of gradients in fuel loads and fuel bed bulk density that are simulated by the model. Changes in connectivity with elevation could affect how readily fires can spread from low elevation sites to higher elevations.  相似文献   

15.
In the southwestern U.S., wildland fire frequency and area burned have steadily increased in recent decades, a pattern attributable to multiple ignition sources. To examine contributing landscape factors and patterns related to the occurrence of large (⩾20 ha in extent) fires in the forested region of northern Arizona, we assembled a database of lightning- and human-caused fires for the period 1 April to 30 September, 1986–2000. At the landscape scale, we used a weights-of-evidence approach to model and map the probability of occurrence based on all fire types (n = 203), and lightning-caused fires alone (n = 136). In total, large fires burned 101,571 ha on our study area. Fires due to lightning were more frequent and extensive than those caused by humans, although human-caused fires burned large areas during the period of our analysis. For all fires, probability of occurrence was greatest in areas of high topographic roughness and lower road density. Ponderosa pine (Pinus ponderosa)-dominated forest vegetation and mean annual precipitation were less important predictors. Our modeling results indicate that seasonal large fire events are a consequence of non-random patterns of occurrence, and that patterns generated by these events may affect the regional fire regime more extensively than previously thought. Identifying the factors that influence large fires will improve our ability to target resource protection efforts and manage fire risk at the landscape scale.  相似文献   

16.
Spatial ecology is becoming an increasingly important component of resource management, and the general monitoring of how human activities affect the distribution and abundance of wildlife. Yet most work on the reliability of sampling strategies is based on a non-spatial analysis of variance paradigm, and little work has been done assessing the power of alternative spatial methods for creating reliable maps of animal abundance. Such a map forms a critical response variable for multiple scale studies relating landscape structure to biotic function. The power to reconstruct patterns of distribution and abundance is influenced by sample placement strategy and density, the nature of spatial auto-correlation among points, and by the technique used to extrapolate points into an animal abundance map. Faced with uncertainty concerning the influence of these factors, we chose to first synthesize a model reference system of known properties and then evaluate the relative performance of alternative sampling and mapping procedures using it. We used published habitat associations of tree nesting boreal neo-tropical birds, a classified habitat map from the Manitou Lakes area of northwestern Ontario, and point count means and variances determined from field studies in boreal Canada to create 4 simulated models of avian abundance to function as reference maps. Four point sampling strategies were evaluated by 4 spatial mapping methods. We found mixed-cluster sampling to be an effective point sampling strategy, particularly when high habitat fragmentation was avoided by restricting samples to habitat patches >10 ha in size. We also found that of the 4 mapping methods, only stratified ordinary point kriging (OPK) was able to generate maps that reproduced an embedded landscape-scale spatial effect that reduced nesting bird abundance in areas of higher forest age-class fragmentation. Global OPK was effective only for detecting broader, regional-scale differences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In the North American upper Great Lakes region, forests dominated by the aspens (Populus grandidentata Michx. – bigtooth aspen, and P. tremuloides Michx. – trembling aspen), which established after late 19th and early 20th century logging, are maturing and succession will create a new forest composition at landscape to regional scales. This study analyzed the capabilities of Landsat ETM+ remote sensing data combined with existing ecological land unit classifications to discriminate and quantify patterns of succession at the landscape scale over the 4200 ha University of Michigan Biological Station (UMBS) in northern Lower Michigan. In a hierarchical approach first multi-temporal Landsat ETM+ was used with a landscape ecosystem classification to map upland forest cover types (overall accuracy 91.7%). Next the aspen cover type was subset and successional pathways were mapped within that type (overall accuracy 89.8%). Results demonstrated that Landsat ETM+ may be useful for these purposes; stratification of upland from wetland types using an ecological land unit classification eliminated confounding issues; multi-temporal methods discriminated evergreen conifer versus deciduous understories. The Landsat ETM+ classifications were then used to quantify succession and its relationship to landform-level ecological land units. Forests on moraine and ice contact landforms are succeeding distinctly to northern hardwoods (95% and 88% respectively); those on outwash and other landforms show greater diversity of successional pathways.  相似文献   

18.
调查分析祁连山北坡土壤有机碳和全氮含量随海拔变化的趋势及其与气候要素和植被的关系。结果显示:就土壤有机碳含量,在0~5cm、5~1 5cm和1 5~30cm土层,低海拔(2200m)和高海拔(3600m)处较低,中间海拔(3000~3500m)处较高;灌丛草甸森林高寒草甸干旱草原荒漠草原(P0.05)。就土壤全氮含量,0~5cm和5~1 5cm土层,3400m和3500m处较高,2200m和2800m处较低;1 5~35cm土层,3400m处较高、2200m和2800m处较低;0~5cm土层,灌丛草甸高寒草甸森林干旱草原荒漠草原;5~1 5和1 5~35cm土层,灌丛草甸森林高寒草甸干旱草原荒漠草原(P0.05)。就土壤碳氮比,在0~5cm、5~1 5cm和15~30 cm土层,3000m和3200m处最高;2300m和2800m处最低;森林灌丛草甸高寒草甸干旱草原或荒漠草原。土壤有机碳和全氮含量及碳氮比总体上都随年均温度增加而降低,随年降水量增加而增加。不考虑海拔差异,0~5cm、5~1 5cm和1 5~30cm土层土壤有机碳和全氯含量相关系数较高;考虑海拔差异,在不同土层和海拔的差异较大。  相似文献   

19.
Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine – Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire-scarred trees and inferences from forest stand ages. We crossdated 153 fire-scarred trees from an approximately 4000 ha study area that recorded 77 total fire years from 1197 to the present. Spatial extent of burned areas during fire years varied from the scale of single trees or small clusters of trees to fires that burned across the entire landscape. Intervals between fire years varied from 1 to 29 years across the entire landscape to 3 to 58 years in one stand, to over 100 years in other stands. Large portions of the landscape did not record any fire for a 128 year-long period from 1723 to 1851. Fire severity varied from low-intensity surface fires to large-scale, stand-destroying fires, especially during the 1851 fire year but also possibly during other years. Fires occurred throughout tree growing seasons and both before and after growing seasons. These results suggest that the fire regime has varied considerably across the study area during the past several centuries. Since fires influence plant establishment and mortality on the landscape, these results further suggest that vegetation patterns changed at multiple scales during this period. The fire history from Cheesman Lake documents a greater range in fire behavior in ponderosa pine forests than generally has been found in previous studies.  相似文献   

20.
The conversion of forests and farmlands to human settlements has negative impacts on many native species, but also provides resources that some species are able to exploit. American Crows (Corvus brachyrhynchos), one such exploiter, create concern due to their impact as nest predators, disease hosts, and cultural harbingers of evil. We used various measures of crow abundance and resource use to determine crows’ response to features of anthropogenic landscapes in the Puget Sound region of the United States. We examined land cover and land use composition at three spatial scales: study sites (up to 208 ha), crow home ranges within sites (18.1 ha), and local land cover (400 m2). At the study site and within-site scales crow abundance was strongly correlated with land cover providing anthropogenic resources. In particular, crows were associated with the amount of ‘maintained forest’ cover, and were more likely to use grass and shrub cover than forest or bare soil cover. Although crows did not show a generalized response to an edge variable, they exhibited greater use of patchy habitat created by human settlements than of native forests. Radio-tagged territorial adults used resources within their home ranges relatively evenly, suggesting resource selection had occurred at a larger spatial scale. The land conversion pattern of new suburban and exurban settlements creates the mix of impervious surfaces and maintained vegetation that crows use, and in our study area crow populations are expected to continue to increase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号