首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is expected to affect the Alps by increasing the frequency and intensity of summer drought events with negative impacts on ecosystem water resources. The response of CO2 and H2O exchange of a mountain grassland to natural fluctuations of soil water content was evaluated during 2001-2009. In addition, the physiological performance of individual mountain forb and graminoid plant species under progressive soil water shortage was explored in a laboratory drought experiment. During the 9-year study period the natural occurrence of moderately to extremely dry periods did not lead to substantial reductions in net ecosystem CO2 exchange and evapotranspiration. Laboratory drought experiments confirmed that all the surveyed grassland plant species were insensitive to progressive soil drying until very low soil water contents (<0.01 m3 m−3) were reached after several days of drought. In field conditions, such a low threshold was never reached. Re-watering after a short-term drought event (5 ± 1 days) resulted in a fast and complete recovery of the leaf CO2 and H2O gas exchange of the investigated plant species. We conclude that the present-day frequency and intensity of dry periods does not substantially affect the functioning of the investigated grassland ecosystem. During dry periods the observed “water spending” strategy employed by the investigated mountain grassland species is expected to provide a cooling feedback on climate warming, but may have negative consequences for down-stream water users.  相似文献   

2.
Huang  B.  Kuo  S.  Bembenek  R. 《Water, air, and soil pollution》2004,158(1):37-51
Although evaluations of the availability of cadmium (Cd) contaminants in phosphate fertilizers have been made, few have examined the transfer efficiency of Cd from fertilizers to plants, especially under field conditions. This 2-year field study determined the transfer of added Cd to lettuce (Lactuca sativa L.) (Royal Green) from a western phosphate rock (PR) and a triple superphosphate (TSP) as affected by liming and rate of fertilizer (or Cd) input. A readily soluble Cd salt, CdCl2, was included in the study for comparison. The cumulative amounts of Cd added from the fertilizers and CdCl2 over the 2-year period ranged from 0 to 1440 g ha–1. Lettuce yield increased with increasing TSP rates, but was unaffected by PR. Significant (P < 0.01) effects of Cd source and rate, lime, and year were found on Cd accumulation by lettuce. The transfer of the added Cd was consistently higher for CdCl2 than for the fertilizers regardless of lime rate. A contrasting year effect was also found between the two P fertilizers. In the second year of application, the Cd transfer efficiency increased in the soil treated with the PR, but decreased in the soil treated with the TSP. The Cd transfer efficiency for the plant was better measured with DTPA–Cd (r 2= 0.78 – 0.80) or CaCl2–Cd (r 2= 0.57 – 0.76) than with soil total Cd (r 2= 0.39 to 0.54) across all Cd sources and lime rates. This is because DTPA–Cd or CaCl2–Cd reflected the influences of the amount of Cd added, Cd source, and lime rate on Cd accumulation by the plant better than did the soil total Cd. Of the amount of Cd added from the fertilizers an average of 1.0% or less was accumulated in the harvested lettuce tissue. Applications of the fertilizers at high rates could result in increased Cd accumulation in the soil over time.  相似文献   

3.
宁夏六盘山10种木本植物抗旱性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
2005年7—8月在宁夏六盘山南侧的香水河小流域(半湿润地区)和北侧的叠叠沟小流域(半干旱地区),应用PV技术测定辽东栎(Quercus liaotungensis)、少脉椴(Tilia paucicostata)、白桦(Betula platyphylla)、红桦(Betula albo-sinensis)、糙皮桦(Betula utilis)、华北落叶松(Larix principis-rupprechtii)、华山松(Pinus armandii)、山杨(Populus davidi-ana)、山桃(Prunus davidiana)和沙棘(Hippophae rhamnoides)10种木本植物的多个水分参数,并对这10种木本植物的抗旱性进行综合评定。结果表明:在测定期内,用不同的水分参数比较这10种木本植物的抗旱性大小排序存在一定的差异;采用Fuzzy函数方法综合评定植物的抗旱性研究表明,香水河小流域内7种木本植物的抗旱能力由强到弱为:少脉椴、华山松、辽东栎、华北落叶松、白桦、红桦、糙皮桦;叠叠沟小流域内4种木本植物的抗旱能力由强到弱为:华北落叶松、山桃、沙棘、山杨,其与束缚水/自由水的单指标评价结果相近,说明树种的自身贮水调节能力对抗旱性评价具有重要作用。2种不同水分条件地域内华北落叶松的抗旱能力明显不同,叠叠沟小流域华北落叶松的抗旱能力比香水河小流域强,说明同一树种在干旱条件下通过长期适应会提高抗旱能力。  相似文献   

4.
Studies were conducted to determine changes in organic matter and microbial biomass carbon in comparison with structural stability at the surface soil (0–5 cm) of a Charlottetown fine sandy loam, an Orthic Podzol, at three tillage and grassland sites situated in Prince Edward Island. The tillage experiments, established for 3–5 years, included comparisons of mouldboard ploughing, direct drilling, shallow tillage, and chisel ploughing. Two indices of soil structural stability were used: mean weight diameter (MWD) and aggregation index (AI). The latter index assigns a weight factor to aggregate size ranges based on their value for plant germination and root growth.Direct drilling and reduced tillage increased the level of soil organic carbon by 10–17%, relative to mouldboard ploughing. Organic carbon was more enriched in 1–2 mm and 4.75–9.00 mm macroaggregates, especially the former, compared with whole soil. The MWD of aggregates after wet sieving was 33% and 55%, relative to the grassland sites, for mouldboard ploughing and direct drilling, respectively. On these soils of similar mineralogy and particle size, a close linear relationship (r=0.942) was observed between organic carbon (r=0.947) and nitrogen (r=0.923). The AI was significantly correlated to both organic carbon and microbial biomass carbon using power regression. In contrast to MWD, the AI under direct drilling and reduced tillage, associated with an organic carbon level of 2.5%, approximated the AI under grass. Overall, the study showed that minimum tillage systems in humid climates can improve structural stability at the soil surface of fine sandy loams over a relatively short time frame.  相似文献   

5.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

6.
Sewage sludge application to semiarid grassland may represent a beneficial means of utilizing this waste product for restoration of degraded sites. Consequently, dried municipal sewage sludge was applied at three rates (22.5, 45, and 90 Mg ha–1) to a degraded semiarid grassland soil in order to determine the effects of sludge amendments on forage productivity, soil heavy metal content, and metal uptake by blue grama (Bouteloua gracilis).Soil and plant properties in control and amended plots were measured after 1, 2, and 5 growing seasons.Soil nutrients increased linearly with increased sludge application in the first two growing seasons. Consequently, forage quality and total production of blue grama improved significantly over the unamended control as the tissue levels of N, P, K, and crude protein increased. Cadmium and Pb in the sludge-treated plots did not increase significantly over the control after 1 and 2 growing seasons. Levels of DTPA-extractable soil micronutrients (Cu, Fe, Mn, Zn) increased linearly with increased sludge application rate to soil concentrations recommended for adequate plant growth. Soil N, P, and K concentrations remained higher in the sludge-amended soils after 5 growing seasons, while Cu and Cd increased to slightly above desireable limits as the soil pH decreased to 7.4 and 7.0 in the 45 and 90 Mg ha–1 treatments, respectively. However, with the exception of Mn which remained within desirable limits, metal concentrations (including Cu and Cd) in blue grama tissue were not significantly different from the control treatment after five growing seasons. Based on soil and plant tissue metal concentrations, it appears that sludge applied at rates between 22.5 and 45 Mg ha–1 will maintain the most favorable nutrient levels coupled with significant improvements in forage production in this semiarid grassland environment.  相似文献   

7.
Long-term (1992–2002) effects of climate changes on soil Collembola in Scots pine Pinus sylvestris forests in North Vidzeme Biosphere Reserve (northern Latvia) are investigated. The study was carried out in three forest stands of different age, young (30–40 years), middle aged (50–70 years), and old (150–200 years). One hundred soil samples were collected within each sampling site once a year in autumn over a period of 11 years. In total, 66 species of Collembola were found. Species richness varied between 47 and 56 and density of Collembola from 7300 to 8300 ind m−2. A statistically significant increase in the sums of positive air temperatures (4 °C) was recorded during the period of investigation. Precipitation and thereby soil moisture showed considerable year-to-year fluctuations. Non-metric Multidimensional Scaling of the data yielded two axes explaining 48.6% and 38.6% of the variation. Axis 1 coincided with the trend of sums of positive air temperature (r=0.66). Axis 1 corresponded best with the negative impact of warming of climate on Collembola, mainly on the euedaphic species inhabiting the deeper layers of the organic soil horizon. Axis 2 was considered reflecting the effect of soil moisture fluctuations (correlation with moisture r=-0.62) on litter dwelling, mostly hemiedaphic Collembola. Species richness tended to decrease gradually in all forest sites during the study period from 29–36 to 13–26 species. Correlation between axes (r=0.455) indicated interaction effects between positive air temperatures and soil moisture. Forest age showed no substantial effect on the community structure, therefore the changes observed cannot be explained by ecological succession.  相似文献   

8.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

9.
在全国退耕还林工程典型地区陕西省吴起县境内,选取四面窑沟流域为研究对象,采用RS和GIS监测退耕还林工程的具体实施方式及其面积,并提出考虑土地覆盖汇流影响的改进坡长因子,利用ArcGIS和RUSLE评估流域在退耕前后的土壤侵蚀强度变化,在此基础上,采用机会成本法和替代价格法评估流域退耕还林工程的土壤保育价值。结果表明:1997-2004年,流域内实际开展退耕还林工程1895.8hm^2,其中,荒山造林369.99hm^2、退耕还林357.48hm^2、退耕还草901.72hm^2、人工封育266.61hm^2;退耕前(1997年)后(2004年)流域土壤侵蚀模数减少了4644.04t/(km^2·a),侵蚀强度由极强度降低为中度;退耕还林工程每年产生土壤保育价值1324.3万元,其中,减少土壤侵蚀效益8.11万元、减少肥力流失效益1180.22万元、减少泥沙淤积效益124.45万元、培育土壤效益11.52万元。  相似文献   

10.
In 2002–2004 an investigation of Collembola communities in the Zádiel Valley (Slovak Karst, Slovakia) was carried out. The karst valley is characterised by climatic and vegetation inversion. To assess the effect of mesoclimate inversion upon soil Collembola five sites were selected in hypsometric sequence from the karst plateau down the valley: (1) subxerophilous pasture – ass. GlechomoFestucetum, (2) lime wood – ass. MercurialiTilietum, (3) beech wood – ass. Dentario bulbiferae-Fagetum, (4) maple–hornbeam wood – ass. AceriCarpinetum, and (5) secondary oak wood. In total 152 soil Collembola species were collected, the numbers for particular sites ranging between 70 and 108. Evidently higher species richness was observed in soil of the beech wood compared to other selected forest plots. Thirteen species revealed affinity to inversed (wet and cold) stands of beech (3) and maple–hornbeam wood (4), four of them represented montane species, whereas five species clearly preferred thermophilous sites (1, 2, 5). The presence of 11 montane species at the bottom of the gorge (4) documented the inverse character of the site: Ceratophysella sigillata, C. silvatica, Friesea albida, Deutonura albella, D. stachi, Superodontella lamellifera, Tetrodontophora bielanensis, Heteraphorura variotuberculata, Kalaphorura carpenteri, Orthonychiurus rectopapillatus and Plutomurus carpaticus. Abundance of Folsomia quadrioculata significantly correlated with the soil microclimate – moisture (p < 0.01, r = 0.92). Distribution data on Collembola were performed by cluster (PC-ORD) and CCA ordination techniques. Collembolan communities of two neighbouring forest stands with identical soil type (rendzina) – lime (2) and beech wood (3) – were the most similar in species composition. Meso-/microclimatic gradients within a karst landscape play an important role in determining diversity and community structure of the soil Collembola.  相似文献   

11.
The effect of humus, readily decomposable organic matter, and carbohydrates of a nonspecific nature on the formation of water-stable aggregates in field rotation members of a calcareous soil in central Iran, Isfahan (fine loamy mixed thermic typic haplargid) has been studied. The study was carried out at Lavark experimental farm in plots receiving 0 (T1), 25 (T2), 50 (T3) and 100 (T4) Mg/ha of manure for 5 years successively with a cropping rotation of wheat (Triticum aestivum L.)–corn (Zea mays L.) every year and plots under similar chemical fertilizer management but with three different cropping rotations (T5, T6 and T7) that has been the prevalent cropping systems. Three replications of soil sample in each treatment and at the depths of 0–5 and 5–15 cm were used to measure organic carbon (OC), hot-water-soluble carbohydrate, dilute acid hydrolysable carbohydrate, cold-water-soluble carbohydrate and mean weight diameter of water stable aggregates. The highest amount of carbohydrate (700 mg/kg) and aggregate stability (0.8 mm) were obtained in plots with 100 Mg/ha manure (T4). The amount of carbohydrate extracted from soil samples decreased in the order of hot water, dilute acid and cold water extracts.Aggregate stability had a better correlation with hot water (r = 0.74**) and dilute acid-soluble carbohydrate (r = 0.73**) than organic carbon (r = 0.62**) content of soil. This indicates that the carbohydrate extracted by hot water and dilute acid may be a suitable indicator for showing soil quality, particularly in relation to soil aggregation.  相似文献   

12.
Under semiarid subtropical field conditions, denitrification was measured from the arable soil layer of an irrigated wheat–maize cropping system fertilized with urea at 50 or 100 kg N ha–1 year–1 (U50 and U100, respectively), each applied in combination with 8 or 16 t ha–1 year–1 of farmyard manure (FYM) (F8 and F16, respectively). Denitrification was measured by acetylene inhibition/soil core incubation method, also taking into account the N2O entrapped in soil cores. Denitrification loss ranged from 3.7 to 5.7 kg N ha–1 during the growing season of wheat (150 days) and from 14.0 to 30.3 kg N ha–1 during the maize season (60 days). Most (up to 61%) of the loss occurred in a relatively short spell, after the presowing irrigation to maize, when the soil temperature was high and a considerable NO3-N had accumulated during the preceding 4-month fallow; during this irrigation cycle, the lowest denitrification rate was observed in the treatment receiving highest N input (U100+F16), mainly because of the lowest soil respiration rate. Data on soil respiration and denitrification potential revealed that by increasing the mineral N application rate, the organic matter decomposition was accelerated during the wheat-growing season, leaving a lower amount of available C during the following maize season. Denitrification was affected by soil moisture and by soil temperature, the influence of which was either direct, or indirect by controlling the NO3 availability and aerobic soil respiration. Results indicated a substantial denitrification loss from the irrigated wheat–maize cropping system under semiarid subtropical conditions, signifying the need of appropriate fertilizer management practices to reduce this loss.  相似文献   

13.
This research attempted to investigate a part of the United Nations sustainable development goal 15, dealing with preventing land degradation and halting the loss of microorganisms’ diversity. Since soil deterioration and biodiversity loss in the Mediterranean area are occurring because of intensive management, we evaluated some biochemical and microbiological parameters and bacterial biodiversity under long-term conventional tillage (CT) and no-tillage (NT) practices, in Basilicata, a typical Region of Southern Italy, characterized by a semiarid ecosystem. The highest biological fertility index (BFI) (composed of soil organic matter, microbial biomass C, cumulative microbial respiration during 25 days of incubation, basal respiration, metabolic quotient and mineralization quotient) was determined for the 0–20 cm of NT soil (class V, high biological fertility level). The analysis of the taxonomic composition at the phylum level revealed the higher relative abundance of copiotrophic bacteria such as Proteobacteria, Actinobacteria and Bacteroidetes in the NT soil samples as compared to the CT soil. These copiotrophic phyla, more important decomposers of soil organic matter (SOM) than oligotrophic phyla, are responsible of a higher microbial C use efficiency (CUE) in tilled soil, being microbial community composition, C substrates content and CUE closely linked. The higher Chao1 and Shannon indices, under the NT management, also supported the hypothesis that the bacterial diversity and richness increased in the no-till soils. In conclusion, we can assume that the long-term no-tillage can preserve an agricultural soil in a semiarid ecosystem, enhancing soil biological fertility level and bacterial diversity.  相似文献   

14.
Summary Lumbricus terrestris L. juveniles confined in nylon mesh bags grew at mean rates of 6–12 mg ind–1 day–1 in reclaimed peat grassland soil, while the growth rates of Aporrectodea caliginosa (Sav.) juveniles were 1.5–2.1 mg ind–1 day–1. Earthworm population densities exceeding 700 m2 had become established within 1 year adjacent to sods transplanted from an old pasture, while microplots enclosed in nylon mesh cages had mean population densities of 318–408 earthworms m–2 and biomass of 89–111 g m–2 3–4 1/2 years after inoculation. Herbage yields were 25% greater in the 2nd year and 49% greater in the 3rd year in earthworm-inoculated microplots which received an annual application of cattle slurry compared with similarly fertilized, non-inoculated cages.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

15.
The major objectives of this study were to determine the influence of grazing on the soil microbial biomass and activity in semiarid grassland and shrubland areas and to quantify the canopy effect (the differences in soil microbial biomass and activities between soils under plant canopies and soils in the open between plants). We also quantified changes in microbial biomass and activity during seasonal transition from dry to moist conditions. Chronosequences of sites withdrawn from grazing for 0, 11, and 16 years were sampled in a grassland (Bouteloua spp.) area and a shrubland (Atriplex canescens) area on and near the Sevilleta National Wildlife Reguge in central New Mexico, USA. Samples were obtained from beneath the canopies of plants (Yucca glauca in the grassland and A. canescens in the shrubland) and from open soils; they were collected three times during the spring and summer of a single growing season. Organic C, soil microbial biomass C, and basal respiration rates (collectively called the soil C triangle) were measured. We also calculated the microbial: organic C ratio and the metabolic quotient (ratio of respiration to microbial C) as measures of soil organic C stability and turnover. Although we had hypothesized that individual values of the soil C triangle would increase and that the ratios would decrease with time since grazing, differences in microbial parameters between sites located along the chronosequences were generally not significant. Grazing did not have a consistion effect on organic C, microbial C, and basal respiration in our chronosequences. The microbial: organic C ratio and the metabolic quotient generally increased with time since grazing on the shrubland chronosequence. The microbial: organic C ratio decreased with time since grazing and the metabolic quotient increased with time since grazing on the grassland chronosequence. The canopy effect was observed at all sites in nearly all parameters including organic C, microbial C, basal respiration, the microbial: organic C ratio, and the metabolic quotient which were predominantly higher in soils under the canopies of plants than in the open at all sites. Microbial biomass and activity did not increase during the experiment, even though the availability of moisture increased dramatically. The canopy effects were approximately equal on the shrubland and grassland sites. The microbial: organic C ratios and the metabolic quotients were generally higher in the shrubland soils than in the grassland soils.  相似文献   

16.
采用室内培养方法, 以西藏拉萨地区选取的草地、农田为对照, 测定并比较日光温室土壤碳、氮矿化特征, 揭示草地和粮田转变为日光温室菜地后土壤矿化演变过程, 为西藏高原设施菜地土壤管理提供科学依据。结果表明, 草地、农田、1年温室、5年温室土壤有机碳矿化速率均在培养前期(0~7 d)日均矿化量最快, 且草地土壤显著高于农田和5年温室土壤(P<0.05), 温室土壤间无差异(P>0.05); 在培养28 d后, 农田土壤有机碳矿化释放的CO2-C累积量高于草地, 草地高于1年温室和5年温室, 但不同类型土壤碳矿化释放的CO2-C累积量间差异不显著(P>0.05)。无论是草地、农田还是温室, 4种土壤氮矿化都主要发生在培养的前期(0~3 d), 之后随着培养时间的延长, 不同利用类型土壤氮素转化以氮素的固定为主; 至培养结束时, 草地、农田、1年温室、5年温室土壤无机氮含量分别为培养0 d的29.04%、75.94%、66.86%、65.70%, 说明草地土壤氮素矿化能力较农田和温室强, 而温室土壤氮素矿化能力随着温室利用年限的延长而不显著升高, 农田氮矿化能力最弱。方差分析表明, 土壤氮矿化能力因土壤类型而异但矿化过程不因土壤类型而存在差异。  相似文献   

17.
The Mongolian steppe zone comprises a major part of East Asian grasslands. The objective of this study was to separately evaluate the quantitative dependencies of gross primary production (GPP) and ecosystem respiration (Reco) on the environmental variables of temperature, moisture, radiation, and plant biomass in a semi-arid grassland ecosystem. We determined GPP and Reco using transparent and opaque closed chambers in a grassland dominated by Poaceae species in central Mongolia during five periods: July 2004, May 2005, July 2005, September 2005, and June 2006. Values of GPP were linearly related to live aboveground biomass (AGB) enclosed by the chamber. The amount of GPP per unit ground area differed among the study periods, whereas GPP normalized by the amount of AGB did not differ significantly among the periods, suggesting that plant production per unit green biomass did not depend on the phenological stage. GPP/AGB fit well a rectangular hyperbolic light–response curve for all the study periods. When the air and soil were dry, considerable reduction in GPP was observed. The GPP/AGB ratio was also expressed as individual functions of air temperature, vapor pressure deficit, and volumetric soil water content. Reco was exponentially related to the soil temperature and the relationship was modified by soil moisture. The amount of Reco and its temperature sensitivity (Q10) declined with decreasing soil moisture. Sharp increases of Reco after rainfall events were observed. The values of Reco, even including the rain-induced pulses, were expressed well as a bivariate function of soil temperature and soil moisture near the soil surface.  相似文献   

18.
We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 g g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 g g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 g g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.  相似文献   

19.
Farmers' perceptions of soil fertility change were compared with observations on soil quality changes and crop performance in soils from a chronosequence representing a range of soil ages since conversion from forest to cropland (0 to 57 years). A majority of the farmers, 92 per cent, had observed a decline in soil fertility on their land. Farmers use crop yield, indicator plants, soil softness and soil colour to judge soil fertility. They identified 11 plants that they used to indicate high soil fertility and four plants that they used to indicate low soil fertility. There was a strong correlation (r = 0·96) between soil organic matter content (loss on ignition) and farmers' ranking of soil fertility based on colour and softness of soil samples from the chronosequence. The biotest experiment with maize showed an exponential decline in biomass production along the chronosequence, confirming the results of farmers' soil fertility ranking. In the biotest, total soil N predicted produced biomass well (r2 = 0·95), whereas the relationship with soil available P (Olsen) was less obvious. Among the eight analysed plant nutrients in the maize leaves, N content was found to correlate best with biomass production (r2 = 0·94). We conclude (i) that there is good agreement between farmers' knowledge and scientific indicators of soil fertility and (ii) that the major reason for declining soil fertility in Beseku is the decrease in N mineralization over time. Interventions should focus on supporting farmers to implement a diversified nutrient management strategy that can maintain or increase long‐term productivity of the soil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Simple tests of structural stability are needed for evaluating the ease with which soils slake and erode when in contact with water. In a laboratory study, we related the percolation stability (PS) of 22 Nigerian soils to land use, soil properties, structural stability indices and simulated rainfall erosion. All measurements were carried out with the 1–2 mm diameter air-dry aggregates. Land use influenced PS more than the type of soil. Forest soils, bush fallows, mulched, minimally tilled plots and pasture lands had rapid PS (>250 ml/10 min) values, whereas mulched conventionally tilled plots, bare fallows and continuously cultivated plots from where residues were removed by burning had relatively slow to moderate PS values (34–241 ml/10 min). The single most important soil property that correlated positively with PS is organic matter (OM) (r = 0.55*) followed by total Fe + Al (r = 0.52*). The significant inverse relationship (r = −0.49*) between log (PS) and log (pH/OM) indicates a decrease in PS of these acidic, low-OM soils with increasing pH levels. The percent water-stable aggregate (WSA) >0.20 mm diameter, aggregated clay index (AC) and clay dispersion ratio (CDR) correlated weakly with PS. Conversely, the sealing index (SI) (i.e. the ratio of saturated hydraulic conductivity of an uncrusted to that of a crusted soil) had a strong, inverse relationship with PS (r = −0.97***). These relationships indicate that PS measures the slakability (and not dispersibility) of soils. The relationship between PS and erosion (E) was an exponential decay form, E = 102 e−0.0043PS (r2 = 0.98) and showed that high interrill erosion rates would be expected on soils with PS < 250 ml/10 min. The PS which is simple to measure, is, therefore, a good indicator of structural stability for assessing the potential of these soils to erode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号