共查询到20条相似文献,搜索用时 33 毫秒
1.
É. C. Dianese M. E. N. Fonseca A. K. Inoue-Nagata R. O. Resende L. S. Boiteux 《Euphytica》2011,180(3):307-319
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises
a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other
viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression
and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a
second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic
infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of
genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression. 相似文献
2.
Gene effects of resistance to two isolates of Phytophthora
nicotianae in two crosses of pepper were investigated using separate generation means analysis. Additive-dominance models were inadequate
in all cases. Digenic parameter models were adequate in three cases and the probability of goodness of fit of models was negatively
correlated with the aggressiveness of the pathogen. None of these models explained variation among generation means in the
combined cross Beldi × CM334 with P.
nicotianae isolate Pn2. Additive × additive, dominance × dominance and dominance × additive effects were significant in most cases. Additive and
dominance effects (of negative sign) contribute more to resistance than to susceptibility. Additive variance was greater than
environmental and dominance variance and ranged from 0.038 to 0.224. Narrow-sense heritabilities were dependent upon the cross
and inoculate and ranged from 86 to 92%. The results of this study indicate that selection with more aggressive isolates of
the pathogen will be useful for enhancing resistance in pepper. 相似文献
3.
In maize hybrid seed production, some hybrid seed in the field must be harvested before reaching physiological maturity because
of the potential damage from early fall frosts. However, early harvesting can result in poor quality and low vigor of seeds.
To elucidate the genetic basis of seed vigor at different stages of maturity, the seeds of a set of recombinant inbred line
(RIL) populations at three different stages of maturity (32, 40, and 45 days after pollination; DAP), were used to evaluate
the performance of four traits for seed vigor in the field. A genetic linkage map was constructed using 217 SSR makers covering
2438.2 cM with an average interval of 11.2 cM. The results showed that there were significant positive relationships among
the four traits of seed vigor at all three sampling times, and all showed quantitative changes according to the degree of
maturity of the seeds. However, the four traits of seed vigor were not significantly related to the 100-kernel weight. In
total, we detected 16 different QTL for the four measured traits of seed vigor at three sampling times; five QTL were for
germination energy, three for germination percentage, four for germination index, and four for vigor index. Interestingly,
four QTL for seed vigor, which were detected at all three sampling times, were located in the same region on chromosome 7.
This result implies that this region of chromosome 7 is important for seed vigor of seeds harvested before they reach physiological
maturity. 相似文献
4.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence
of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines
show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order
to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential
foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one
of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance
gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the
hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1. 相似文献
5.
Junming Li Lei Liu Yuling Bai Richard Finkers Feng Wang Yongchen Du Yuhong Yang Bingyan Xie Richard G. F. Visser Adriaan W. van Heusden 《Euphytica》2011,179(3):427-438
Late blight (Phytophthora infestans) can have devastating effects on tomato production over the whole world. Most of the commercial cultivars of tomato, Solanum lycopersicum, are susceptible. Qualitative and quantitative resistance has been described in wild relatives of tomato. In general qualitative
resistance can more easily be overcome by newly evolved isolates. Screening of three S. habrochaites accessions (LA1033, LA2099 and LA1777) through a whole plant assay showed that accession LA1777 had a good level of resistance
to several isolates of P. infestans. To explore the potential in this wild species, an introgression line (IL) population of S. habrochaites LA1777 was used to screen individual chromosome regions of the wild species by a detached leaf assay. Two major isolates
(T1,2 and T1,2,4) were used and two parameters were measured: lesion size (LS), and disease incidence (DI). Substantial variation was observed
between the individual lines. QTLs were identified for LS but not for DI. The presence of five QTLs derived from LA1777 (Rlbq4a, Rlbq4b, Rlbq7, Rlbq8 and Rlbq12) results in unambiguous higher levels of resistance. All QTLs co-localized with previously described QTLs from S. habrochaites LA2099 except QTL Rlbq4b, which is therefore a novel QTL. 相似文献
6.
Nineteen accessions of the tuber-bearing species Solanum berthaultii, S. chacoense, S. leptophyes, S. microdontum, S. sparsipilum, S. sucrense, S. venturii, S. vernei and S. verrucosum were tested for their resistance to late blight in two years of field experiments. Plants were artifically inoculated with zoospores of race 1.2.3.4.5.7.10.11 and the development of the disease was followed. Resistance ratings, calculated as the areas under the disease progress curves (ADPC), demonstrated a high resistance in all accessions except in S. sparsipilum, S. leptophyes and their interspecific hybrid. Segregations suggest that major genes for resistance are present in S. sucrense and S. venturii, and may also play a role in S. verrucosum. It is not yet certain wether the resistance of the other accessions is comparable to the partial and durable resistance of S. tuberosum cultivars like Pimpernel, as inheritance and mechanism have yet to be established. However, segregations suggesting the presence of single major genes with complete dominance were not found in these other accessions. Tuber initiation in the field occurred in only one accession, S. tuberosum ssp. andigena, and maturity of the clones was not related to their resistance. In the other accessions maturity types could not be assessed, as the clones require short day conditions for tuber initiation. 相似文献
7.
Bárbhara Joana dos Reis Fatobene Vinícius Teixeira Andrade Giulia Stefania Aloise Maria Bernadete Silvarolla Wallace Gonçalves Oliveiro Guerreiro Filho 《Euphytica》2017,213(8):196
Arabica coffee production is based on highly productive cultivars; however, these cultivars are susceptible to infestation by several biotic agents, including root-knot nematodes. Collections of wild Coffea arabica germplasm represent an important source of genetic variability for resistant cultivar development. In this study, 1046 plants derived from 71 wild coffee trees were evaluated with respect to Meloidogyne paranaensis resistance. In addition to information on plants reactions, we also evaluated the genetic parameters related to resistance. Progenies from the five most promising plants were also evaluated regarding resistance to M. incognita and M. exigua. The yield potential of selected plants was estimated through analysis of data for fruits harvested in 4 different years. Forty-seven plants were considered resistant based on reproduction factor values. The estimated heritability was high for all analyzed variables leading to substantial selection gain, mainly at the progeny mean level. On the basis of heritabilities and genetic correlations, we conclude that selection could be performed based on values of the gall and egg mass index. However, higher genetic gain could be obtained based on nematode count variables. A second experiment confirmed the reactions of the selected five plants to M. paranaensis, and multiple resistance was detected in three of them. The resistant accessions also have yield potential. 相似文献
8.
A. D. Munshi Bishwajit Panda Bikash Mandal I. S. Bisht E. S. Rao Ravinder Kumar 《Euphytica》2008,164(2):501-507
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV.
Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while
the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed
very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately
resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI
in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit.
This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent
and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in
C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding. 相似文献
9.
Matías González-Arcos Maria Esther de Noronha Fonseca Ana Arruabarrena Mirtes F. Lima Miguel Michereff-Filho Enrique Moriones Rafael Fernández-Muñoz Leonardo S. Boiteux 《Euphytica》2018,214(10):178
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions. 相似文献
10.
Agrobacterium-mediated genetic transformation was performed using embryonic axes explants of pigeon pea. Both legume pod borer resistant
gene (cry1Ac) and plant selectable marker neomycine phosphor transferase (nptII) genes under the constitutive expression of the cauliflower mosaic virus 35S promoter (CaMV35S) assembled in pPZP211 binary
vector were used for the experiments. An optimum average of 44.61% successfully hardened dot blot Southern hybridization positive
plants were obtained on co-cultivation media supplemented with 200 μM acetosyringone without L-cysteine. The increased transformation
efficiency from a baseline of 11.53% without acetosyringone to 44.61% with acetosyringone was further declined with the addition
of different concentrations of L-cysteine to co-cultivation media. Transgenic shoots were selected on 50 and 75 mg L−1 kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 20 g L−1 sucrose and 0.5 mg L−1 indole butyric acid in the absence of kanamycin. Furthermore, 100% seed setting was found among all the transgenic events.
The plants obtained were subjected to multi- and nochoice tests to determine the behavioral responses and mortality through
Helicoverpa armigera bioassays on the leaf and relate their relationship with the expression of cry1Ac protein which was found to be less in leaf as compared to the floral buds, anther, pod, and seed. 相似文献
11.
Brent D. McCallum D. Gavin Humphreys Daryl J. Somers Abdulsalam Dakouri Sylvie Cloutier 《Euphytica》2012,183(2):261-274
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes
it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972.
Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian
wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers
caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based
polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes
had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1
to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”.
The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1,
cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present
in many cultivars released since the 1970s, but not generally in the older cultivars. 相似文献
12.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus.
Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage
analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major
effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived
from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii. 相似文献
13.
Bonnie R. Glosier Ebenezer A. Ogundiwin Gurmel S. Sidhu David R. Sischo James P. Prince 《Euphytica》2008,162(1):23-30
The study of the genetics of resistance in pepper to the oomycete pathogen Phytophthora capsici has been complicated due to a lack of use of a common set of pathogen isolates and host genotypes. We have developed a differential
series for this system using eleven pepper genotypes and thirty-four isolates of the pathogen from California, New Mexico,
North Carolina, and Turkey. Through differential patterns of virulence of the isolates on the hosts, we identified fourteen
different physiological races of P. capsici. There appears to be no restriction of races to particular geographical locations. Isolate mating types were also determined,
and both mating types were found in one field in California. The significance of the characterization of physiological races
and existence of both mating types in the field to pepper growers and breeders is discussed. 相似文献
14.
Cucumber green mottle mosaic virus (CGMMV) is a severe threat for cucumber production worldwide. At present, there are no cultivars available in the market which show an effective resistance or tolerance to CGMMV infection, only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis sativus, as well as C. anguria and C. metuliferus, were mechanically infected with the European and Asian strains of CGMMV and screened for resistance, by scoring symptom severity, and conventional RT-PCR. The viral loads of both CGMMV strains were determined in a selected number of genotypes using quantitative RT-PCR. Severe symptoms were found following inoculation in C. metuliferus and in 44 C. sativus accessions, including C. sativus var. hardwickii. Ten C. sativus accessions, including C. sativus var. sikkimensis, showed intermediate symptoms and only 2 C. sativus accessions showed mild symptoms. C. anguria was resistant to both strains of CGMMV because no symptoms were expressed and the virus was not detected in systemic leaves. High amounts of virus were found in plants showing severe symptoms, whereas low viral amounts found in those with mild symptoms. In addition, the viral amounts detected in plants which showed intermediate symptoms at 23 and 33 dpi, were significantly higher in plants inoculated with the Asian CGMMV strain than those with the European strain. This difference was statistically significant. Also, the amounts of virus detected over time in plants did not change significantly. Finally, the two newly identified partially resistant C. sativus accessions may well be candidates for breeding programs and reduce the losses produced by CGMMV with resistant commercial cultivars. 相似文献
15.
The rice leaffolder (RLF), Cnaphalocrocis medinalis is an important pest of rice that causes severe damage in many areas of the world. The plants were transformed with fully
modified (plant codon optimized) synthetic Cry1C coding sequences as well as with the hpt and gus genes, coding for hygromycin phosphotransferase and β-glucuronidase, respectively. Cry1C sequences placed under the control of doubled 35S promoter plus the AMV leader sequence, and hpt and gus genes driven by cauliflower mosaic virus 35S promoter, were used in this study. Embryogenic calli after cocultivation with
Agrobacterium were selected on the medium containing hygromycin B. A total of 67 hygromycin-resistant plants were regenerated. PCR and
Southern blot analyses of primary transformants revealed the stable integration of Cry1C coding sequences into the rice genome with predominant single copy integration. R1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. These transgenic
lines were highly resistant to rice leaffolder (RLF), Cnaphalocrocis medinalis as revealed by insect bioassay. 相似文献
16.
R. B. Cowley G. J. Ash J. D. I. Harper A. B. Smith B. R. Cullis D. J. Luckett 《Euphytica》2012,186(3):655-669
Phenotyping assays in plant pathology using detached plant parts are multi-phase experimental processes. Such assays involve growing plants in field or controlled-environment trials (Phase 1) and then subjecting a sample removed from each plant to disease assessment, usually under laboratory conditions (Phase 2). Each phase may be subject to non-genetic sources of variation. To be able to separate these sources of variation in both phases from genetic sources of variation requires a multi-phase experiment with an appropriate experimental design and statistical analysis. To achieve this, a separate randomization is required for each phase, with additional replication in Phase 2. In this article, Phomopsis leaf and pod blight (caused by Diaporthe toxica) of Lupinus albus was used as a case study to apply a multi-phase experimental approach to identify genetic resistance to this pathogen, and demonstrate the principles of sound experimental design and analysis in detached plant part assays. In seven experiments, 250 breeding lines, cultivars, landraces, and recombinant in-bred lines from a mapping population of L. albus were screened using detached, inoculated leaves, and/or pods. The experimental, non-genetic variance in Phase 2 varied in magnitude compared to the Phase 1 experimental, non-genetic variance. The reliability of prediction for resistance to Phomopsis pod blight was high (mean of 0.70 in seven experiments), while reliability of prediction for leaf assays was lower (mean 0.35–0.51 depending on the scoring method used). 相似文献
17.
This experiment was carried out to investigate whether and how much field resistance to late blight, caused by Phytophthora infestans, is present in the local cultivated potato germplasm. In total 36 entries were compared in a field experiment in an area highly conducive to late blight development. Of the 36 cultivars 32 were local cultivars belonging to five Solanum species, S. tuberosum (1 accession), S. andigena (18), S. juzepczukii (2), S. stenotomum (9) and S. ajanhuiri (2). The other four cultivars were derived from breeding programmes, one being the Dutch cultivar Alpha used as a highly susceptible control. The 36 cultivars were planted according to a simple 6 × 6 lattice design with three replicates. Each replicate was divided in six incomplete blocks each with six cultivars. The disease severity was assessed weekly during 9 weeks starting 48 days after planting. The area under the disease progress curve (AUDPC) was used as a measure of the field resistance. Nine isolates from surrounding potato fields were tested for their virulence to the resistance genes R1–R11 using 22 differential cultivars. The components of the field resistance of 19 of these cultivars were compared in the greenhouse using a local isolate with virulence to all known R-genes, except to R9. The nine isolates represented seven races with a race complexity varying from 7 to 10 virulence factors. All isolates carried virulence against R1, R2, R3, R7, R10 and R11, while virulence against R9 was absent. The AUDPC among the 32 local cultivars ranged from very large, significantly larger than that of ‘Alpha’ to very small. The AUDPC from S. stenotomum accessions ranged from very large to intermediate, those from S. andigena accessions from large to very small. Especially among the S. andigena accessions interesting levels of field resistance were found. Four components of field resistance were assessed, latency period (LP), lesion size (LS), lesion growth rate (LGR) and relative sporulation area (RSA). All four showed a considerable variation among the cultivars. The LP ranged from 3½ to 6 days. The LS ranged from 225 mm2 to 20 mm2. The LGR varied about six-fold, the RSA more than 10-fold. The components tended to vary in association with one another. LP and LGR were well associated with each other and had a significant correlation with the AUDPC. 相似文献
18.
J. Mei L. Qian J. O. Disi X. Yang Q. Li J. Li M. Frauen D. Cai W. Qian 《Euphytica》2011,177(3):393-399
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed.
In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed. 相似文献
19.
Arthikala Manoj Kumar Rohini Sreevathsa Kalpana Nanja Reddy Prasa Trichy Ganesh Makarla Udayakumar 《Journal of Crop Science and Biotechnology》2011,14(2):125-132
Agrobacterium tumefaciens mediated in planta transformation protocol was developed for castor, Ricinus communis. Two-day-old seedlings were infected with Agrobacterium strain EHA105/pBinBt8 harboring cry1AcF and established in the greenhouse. Screening the T1 generation seedlings on 300 mg L−1 kanamycin identified the putative transformants. Molecular and expression analysis confirmed the transgenic nature and identified
high-expressing plants. Western blot analysis confirmed the co-integration of the nptII gene in the selected transgenic plants. Bioassay against Spodoptera litura corroborated with high expression and identified five promising effective lines. Analysis of the T2 generation plants proved the stability of the transgene indicating the feasibility of the method. 相似文献
20.
JianShuang Shen TingLiang Xu Chao Shi TangRen Cheng Jia Wang HuiTang Pan QiXiang Zhang 《Euphytica》2017,213(4):95
Forsythia suspensa and F. ‘Courtaneur’ were used as female parents to cross with Abeliophyllum distichum in 2011 and an intergeneric hybrid of F. suspensa × A. distichum was obtained, though with very low seed set. The morphological characteristics, flower fragrance and volatile organic compounds of flowers were analysed. The intergeneric hybrid had intermediate morphological characteristics of both parents and flower fragrance and was confirmed as a true intergeneric hybrid by amplified fragment length polymorphism (AFLP) markers. Compared with its mother parent (F. suspensa), flowers of the intergeneric hybrid are pale yellow with delicate fragrance. Volatile organic compounds of flowers were retrieved by purge-and-trap techniques, and determined by gas chromatography and mass spectrometry (GC–MS). The main volatile organic components of F. suspensa were isoprenoids, while the main volatile organic components of A. distichum and the hybrid of F. suspensa × A. distichum were aliphatics. To determine the time and the site of intergeneric hybridizing barriers occured, the pollen tubes’ behavior after pollination was observed under fluorescence microscopy. It was found that significant pre-fertilization incompatibility existed in intergeneric crossing combinations [F. ‘Courtaneur’ (Pin) × A. distichum (Thrum) and F. suspensa (Pin) × A. distichum (Thrum)], and only a few pollen tubes of A. distichum penetrated into the ovaries of Forsythia. In our research, an intergeneric hybrid between Forsythia and Abeliophyllum was obtained for the first time, which will provide a solid foundation for expanding the flower color range of Forsythia and breeding fragrant-flowered cultivars. 相似文献