首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, novel cytoplasmic male-sterility (CMS) caused by DCGMS cytoplasm was discovered in radish (Raphanus sativus L.) introduced from Uzbekistan. We performed extensive progeny tests and identified two fertility restorer lines (‘R171’ and ‘R121’) for this new CMS. Two F1 hybrid populations were self-pollinated and backcrossed to produce F2 and BC populations. Inheritance patterns of male-sterility in segregating populations varied depending on paternal lines. Segregation of male-sterility in F2 populations originating from the cross between MS19 and R121 showed that a single locus was involved in fertility restoration. However, populations originating from the cross between MS15 and R171 showed the involvement of more than one restorer-of-fertility genes. The single fertility restorer locus identified in the cross between MS19 and R121 was designated Rfd1 locus. Bulked segregant analysis was performed using RAPD and AFLP, which identified one marker each. Both RAPD and AFLP markers were converted into simple PCR-based co-dominant markers after their isolated flanking sequences were analyzed. Indels 773-bp and 67-bp in length were identified between two Rfd1 allele-linked flanking sequences of the RAPD and AFLP fragments, respectively, then utilized to develop simple PCR markers. In addition, we prove that the newly identified Rfd1 locus is independent of the Rfo locus, another radish fertility restorer for CMS caused by Ogura cytoplasm.  相似文献   

2.
The Rfo fertility restorer gene for the Ogura cytoplasmic male sterility (CMS) applied for oilseed rape hybrid seed production can be monitored with the use of the RAPD OPC021150 marker while molecular breeding. The aim of this work was to convert the RAPD marker into a more suitable SCAR marker. Total DNA was isolated from a doubled haploid line derived from the line BO20 (INRA, France). A fragment of 1150‐bp linked to the Rfo gene was PCR amplified with the use of the RAPD OPC02 primer, cloned and sequenced. A pair of primers was designed and PCR amplification was performed to develop a SCAR marker for the Rfo gene. The new marker was applied for analysis of 220 oilseed rape lines comprising doubled haploid and inbred restorer lines, restored hybrids as well as F1 and F2 recombinant generations involving restorer lines. Simultaneously, the RAPD OPC02 marker was used and it revealed that the markers are equivalent to each other. However, the developed new SCAR marker has made the analysis more practical, rapid and efficient.  相似文献   

3.
A random amplified polymorphic DNA (RAPD) marker named OPC06-1900 was previously found linked to a fertility restorer gene (Rfw) for cytoplasmic male sterility (CMS) in radish (Raphanus sativus L.). The RAPD marker was converted to a dominant sequence characterized amplified region (SCAR) marker SCC06-1894 by molecular cloning and nucleotide sequencing. A BLAST search revealed that the SCAR marker SCC06-1894 showed significant homology to the corresponding regions of Arabidopsis and Brassica sulfate transporter genes. The presence of the intron and exon of the DNA fragment SCC06-1894 was demonstrated by comparing RT-PCR and PCR products. Thus, allele-specific oligonucleotide primers were designed to amplify the SCAR marker SCC06-415. PCR test with F2 plants and sequence analysis showed that SCC06-1894 and SCC06-415 were allelic, linked to Rfw/rfw gene at 8.0 cM. Nine oligonucleotide primers were designed based on a single radish nuclear restorer gene mRNA. A survey of these primer combinations by bulked segregant analysis (BSA) identified three polymorphisms. The three PCR-based markers were co-segregant in the coupling phase and distant from the Rfw gene by 1.4 cM. These specific markers distributed on both sides of the Rfw gene and will be helpful for breeding new rapseed (Brassica napus L.) restorer lines.  相似文献   

4.
In this paper, we described the breeding of transgenic rice restorer line for multiple resistance against bacterial blight, striped stem borer (SSB) and herbicide by conventional crossing of two transgenic parental lines transformed independently with different genes. Two stable transgenic rice lines used as donor parents were developed, one was Zhongguo91 which contained cry1Ab gene (for insect resistance) and bar gene (for tolerance of herbicide), and the other was Yujing6 which contained Xa21 gene (resistance to bacterial blight). The elite restorer line Hui773 was used as recipient and crossed with the two stable transgenic rice lines. Then five successive backcrosses were made using Hui773 as recurrent parent. Two rice elite restorers, T773-1 expressing cry1Ab and bar genes and T773-2 expressing Xa21 gene, were obtained, which were confirmed by PCR analysis and testing selectable marker genes in the hybrid progenies. The cross was made between T773-1 and T773-2 to select stable restorer line carrying Xa21, cry1Ab and bar genes. Finally, we obtained transgenic restorer line T773 with good agronomic traits and obvious multiple resistance to Xanthomonas oryzae pv. oryzae, striped stem borer (Chilo suppressalis) and herbicide. The hybrid F1 generation produced from the cross between transgenic restorer line T773 and a corresponding male sterile line Zaohua2A maintained obvious resistance to rice bacterial blight, rice leaffolder and striped stem borer, and showed significant heterosis. Our results indicate that it is feasible to develop transgenic hybrid rice cultivar through breeding transgenic restorer lines.  相似文献   

5.
Z. Liu    C. Guan    F. Zhao  S. Chen 《Plant Breeding》2005,124(1):5-8
A novel cytoplasmic male sterility‐fertility restoration system has been developed in rapeseed (Brassica napus). The cytoplasmic male sterile line 681A was derived from a spontaneous male sterile mutant in a newly released double‐low rapeseed cultivar ‘Xiangyou 13′. The restorer line 714R was identified in the interspecific progeny from a B. napus×B. juncea‐cross. Genetic analysis showed that fertility restoration for 681A cytoplasmic male sterility was controlled by a single dominant nuclear gene which might originate from B. juncea. The RAPD marker S1039‐520 was found to be linked to the restorer gene in F2 progeny of 681A × 714R with a recombination frequency of 5.45%.  相似文献   

6.
X. L. Li    L. K. Liu    N. Hou    G. Q. Liu  C. G. Liu 《Plant Breeding》2005,124(4):413-415
‘Yi 4060’ is an elite restorer line of a non‐photoperiod‐sensitive D2‐type cytoplasmic male‐sterile (CMS) line of wheat. Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were employed to map one major fertility‐restoring gene (D2Rf1) in ‘Yi 4060′. The sterile and fertile DNA pools were established from individuals in BC6, based on bulked segregant analysis. One RAPD marker E09, linked to D2Rf1, was converted to a SCAR marker and designated as E09‐SCAR865. The genetic distance between E09‐SCAR865 and D2Rf1 is 9.5 cM. Two SSR markers, Xgwm11 and Xgwm18, were also linked to a D2Rf1 and co‐segregated with E09‐SCAR865. The three molecular markers are useful in marker‐assisted breeding of the elite restorer lines for D2 ‐type CMS lines in wheat.  相似文献   

7.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

8.
Two RAPD markers linked to a major fertility restorer gene in pepper   总被引:25,自引:0,他引:25  
Both major and minor genes control the restoring of fertility in the cytoplasmic male-sterility system in pepper (Capsicum annuum L.). Bulked segregant analysis (BSA) was applied to identify molecular markers linked to a major restorer gene (Rf) using the F2 population of NiujiaojiaoNo.21 (rfrf)/Xiangtanwan (RfRf). Two random amplified polymorphic DNA (RAPD) markers linked to this allele were detected with 520 decamer primers with arbitrary sequences. OP131400 is a tightly linked marker with a genetic distance of0.37 cm. OW19800 is on the opposite side with a distance of 8.12 cm. Both markers were repeatable and easy to score. A panel of genotypes, including 13elite inbred lines with different fertility restoring ability, were assayed for the presence ofOP131400 and OW19800. The markers are absent in all sweet pepper lines, indicating that they will be most helpful for transferring Rf into sweet pepper lines. With the aid of these markers, the size of the backcross population for testcrosses can be minimized. Furthermore, these markers will be useful in genetic analysis of the minor genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Over the past decade, M‐type cytoplasmic male sterility (CMS) line W931A and a variety of restorer lines have been exploited for the release of hybrid seeds in soybean (Glycine max). However, the identities of restorer genes in the nuclei of soybean restorer lines are still unclear. In this study, we analysed the inheritance pattern of restorer locus Rf‐m from restorer line WR016 and constructed a high‐resolution map of this locus. Results showed that Rf‐m in WR016 is a monogenic dominant gene located within a 162.4‐kb region on chromosome 16, which is flanked on each side by new developed simple sequence repeat (SSR) markers GmSSR1602 and GmSSR1610 at a distance of 0.11 and 0.25 cM, respectively. Nineteen open reading frames (ORFs) were predicted in this region. Of these, seven genes arranged in tandem on chromosome 16 encode pentatricopeptide repeat (PPR) proteins, which is similar to other reported restorer loci in plants. These results lay a solid foundation for map‐based cloning of the Rf‐m gene and will be helpful for marker‐assisted selection of elite CMS restorer lines.  相似文献   

10.
In CMS (cytoplasmic male sterility)‐based hybrid rye (Secale cereale L.) breeding, effective pollen‐fertility restoration is an essential prerequisite for achieving maximum grain yield on the one hand and for minimizing ergot (Claviceps purpurea) infestation on the other. Restorer genes for the CMS‐inducing ‘Pampa’ cytoplasm derived from landraces collected in Iran and Argentina are used by breeders for achieving this goal. Here, restorer genes from four germplasm sources (‘Altevogt 14160’, ‘IRAN III’, ‘Trenelense’ and ‘Pico Gentario’) were analysed by producing three‐way cross hybrids between an elite CMS single cross and pollinators with and without a given restorer gene. Materials were evaluated on large drilled plots for restorer index (RI), grain yield, plant height and other traits in six environments. In experiment 1, a restorer gene from ‘Altevogt 14160’ was used. Seven pairs of marker‐selected carrier and non‐carrier backcross lines served as pollinators. In experiment 2, the pollinators were 17 backcross line pairs from the other three germplasm sources. These lines were grouped as high (RI > 67%) and low restorers (RI < 30%), respectively, using testcrosses with a highly diagnostic CMS tester. Hybrids carrying an exotic restorer gene suffered from a significant grain yield reduction by 4.4% and 9.4% and were 9.3 and 4.8 cm taller in experiments 1 and 2, respectively. Thousand‐kernel weight was reduced, whereas quality traits were only slightly affected. For all traits, significant genetic variance existed among the testcrosses to the presence vs. absence of a given exotic restorer gene. This offers a chance for the breeder to reduce or ultimately overcome the presently observed performance reductions brought about by exotic restorer genes.  相似文献   

11.
J. Zhang    X. Li    G. Jiang    Y. Xu    Y. He 《Plant Breeding》2006,125(6):600-605
‘Minghui 63’ is a restorer line widely used in hybrid rice production in China for the last two decades. This line and its derived hybrids, including ‘Shanyou 63’, are susceptible to bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo). To improve the bacterial blight resistance of hybrid rice, two resistance genes Xa21 and Xa7, have been introgressed into ‘Minghui 63’ by marker‐assisted selection and conventional backcrossing, respectively. The single resistance gene‐introgressed lines, Minghui 63 (Xa21) and Minghui 63 (Xa7) had higher levels of resistance to bacterial blight than their derived hybrids, Shanyou 63 (Xa21) or Shanyou 63 (Xa7). Both Xa21 and Xa7 showed incomplete dominance in the heterozygous background of rice hybrids by infection with GX325 and KS‐1‐21. The improved restorer lines, with the homozygous genotypes, Xa21Xa21 or Xa7Xa7, were more resistant than their hybrids with the heterozygous genotypes Xa21xa21 or Xa7xa7. To further enhance the bacterial blight resistance of ‘Minghui 63’ and its hybrids, Xa21 and Xa7 were pyramided into the same background using molecular marker‐aided selection. The restorer lines developed with the resistance genes Xa21 and Xa7, and their derived hybrids were evaluated for resistance after inoculation with 10 isolates of pathogens from China, Japan and the Philippines, and showed a higher level of resistance to BB than the restorer lines and derived hybrids having only one of the resistance genes. The pyramided double resistance lines and their derived hybrids have the same high level of resistance to BB. These results clearly indicate that pyramiding of dominant genes is a useful approach for improving BB resistance in hybrid rice.  相似文献   

12.
W. C. Zhou    Y. H. Zhao    M. L. Zou  S. W. Wang 《Plant Breeding》1999,118(3):221-224
The paper summarizes the selection and improvement of pollen fertility restoration in cytoplasmic male-sterile lines during the past 30 years at Jiangsu Province, China. A fertility restorer line (R16) with a good history of strong and stable restoring ability to different sterile lines was bred by accumulating fertility-restoring genes from derivatives of T797 and other restorer lines such as Primepi. A series of well-performing restorer lines with similar fertility-restoring ability has been bred by improving agronomic characters, disease-resistance and kernel size of R16. The restoring ability of these restorer lines using different male-sterile lines demonstrates that fertility restoration is no longer an obstacle for commercial utilization of hybrid wheat with the Triticum timopheeviii cytoplasmic male-sterile system. Line 2114 is a restorer with a single restoring gene transferred from Aegilops umbellulata. Its restoring ability, using both difficult and easily restored lines was 82% and 93.3% respectively. Maiyou No. 5, one hybrid variety, showed 13.2% yield advantage over the control variety in the Jiangsu Province registration test in 1997-1998 and was superior to nine other varieties adapted to the Jiangsu Province.  相似文献   

13.
Tagging of restorer genes for wild abortive (WA) CMS source by studying a 222 individual plants from a F2 population of a cross between IR58025A × IR42686R. The restorer line IR42686R that was used in this study had been previously derived through random mating composite population (RMCP) involving 12 parents facilitated by IR36 genetic male sterility. Four Rf genes were tagged to simple sequence repeats (SSR) markers on chromosomes 1, 7, 10, 12 by recessive class analysis. The recombination frequency between a positive marker and Rf locus was calculated using maximum likelihood estimator assuming that all the 46 extremely sterile individual plants were homozygous at the targeted Rf locus. The recombination frequency between the marker and the restorer trait were converted to genetic distances using Kosambi function. A new Rf locus designated as Rf7 on chromosome 12 was found to be linked to RM7003 at a genetic distance of 13.3 cM (LOD 6.12). We report here first, a new molecular marker (RM 6344) linked to Rf4 locus on chromosome 7 that was previously mapped by trisomic analysis. RM443 and RM315 were flanking the Rf3 gene at a genetic distance of 4.4 (LOD 10.29) and 20.7 cM (LOD 3.98) on chromosome 1, respectively. The Rf6 was flanked on both side with SSR markers RM258 and RM591 at a genetic distance of 4.4 (LOD 10.29) and 23.3 cM (LOD 3.39) located on chromosome 10. The random mating composite population is an excellent breeding approach to develop superior restorer lines and for pyramiding different Rf genes of different CMS systems. Rf genes tagged with closely linked SSR markers would be facilitating marker assisted selection (MAS) in hybrid rice breeding program by reducing time and workload for identifying potential restorers. L. Bazrkar and A. J. Ali equally contributed to this work.  相似文献   

14.
The male sterility system in hybrid seed production can eliminate the cost of emasculation and ensure seed hybridity through avoidance of self pollination. GMS and CMS are two types of male sterility system that currently employed in pepper breeding. Conversion from GMS to CMS will increase the male sterility proportion of female parent from 50 to 100%. In this study, segregation analysis of four male sterile mutants consisting of one CMS mutant (CA1) and three GMS mutants (GA1, GA3 and GA4) showed that each had single recessive gene inheritance. A modified complementation test was performed by replacing male sterile mutants with their maintainer line as male parent. The nuclear restorer gene for CMS was independent of all nuclear restorer genes for GMS and all nuclear restorer genes for GMS were independent each other. Further observation on CMS and GMS male sterility loci revealed that GA1 and GA3 had mutated in both nuclear restorer genes for CMS and GMS, while CA1 and GA4 each carried mutation in single male sterility system of nuclear restorer gene for CMS and GMS, respectively. Conversion from GMS to CMS in the case of lines carried mutations in both sterility systems required only S-type cytoplasm donor, while lines carried mutation in single nuclear restorer gene for GMS required not only S-type cytoplasm but also rf allele donors. The important finding is the broader function of maintainer line in certain male sterility system that can be used as a maintainer or restorer line for other male sterility systems. We also confirmed that line CC1 is the general restorer for both CMS and GMS systems.  相似文献   

15.
Summary Research on 16 sources of pollen fertility restoration revealed that this character was controlled in eight cases by one single dominant gene, in three cases by two complementary genes, in four cases by three complementary genes and in one case by the cumulative action of two nonallelic dominant genes.The presence of minor genes for restoration in the genotype of the fertile analogue B could effect partial fertility restoration in the cytoplasmic male-sterile line A, especially in late backcrosses, when its genotype becomes saturated with such polygenes.A second major gene Rf 2 was identified among the investigated monogenic restorer sources.  相似文献   

16.
C. G. Liu    N. Hou    L. K. Liu    J. C. Liu    X. S. Kang    A. M. Zhang 《Plant Breeding》2006,125(5):437-440
A new cytoplasmic male‐sterile (CMS) system for hybrid wheat breeding, YA‐type CMS line with the cytoplasmic mutant from the common wheat variety ‘CA8057’, was developed by the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. The pollen sterility of YA‐type CMS line was easily maintained but difficult to restore. Some sterile lines with desirable agronomic performance, such as msYA‐‘CA8057’ (BC17), msYA‐‘Yuandong 6’ (BC9), msYA‐‘Jin 411’ (BC9), msYA‐‘WL1’ (BC10), msYA‐‘Yanshi 9’ (BC10), msYA‐‘BPm16’ (BC9), msYA‐‘Jindong 8’ (BC9) and msYA‐‘Jinmai 33’ (BC9), were bred and a restorer line GR1 was screened with 26 new restorer lines being developed by transferring restorer genes from GR1. It was found that abnormal phenomena occurred at the uninucleate‐pollen stage and the abortive pollen was poor in starch content and other components. The variance analysis of agronomic traits in eight sterile lines indicated that there was no general negative effect of cytoplasm. The genetic analysis for fertility restoration showed that two pairs of independent major genes (designated YARf1YARf1YArf2YArf2) and some minor genes could be involved in the fertility restoration in restorer line GR1, and YARf1 was epistatic over YARf2 for the genetic effect of fertility restoration. As a new CMS system, the YA‐type CMS line was of potential value for hybrid wheat breeding and should be further studied.  相似文献   

17.
Heterosis is an important way to improve yield and quality for many crops. Hybrid rice and hybrid maize contributed to enhanced productivity which is essential to supply enough food for the increasing world population. The success of hybrid rice in China has led to a continuous interest in hybrid wheat, even when most research on hybrid wheat has been discontinued in other countries for various reasons including low heterosis and high seed production costs. The Timopheevii cytoplasmic male sterile system is ideal for producing hybrid wheat seeds when fertility restoration lines with strong fertility restoration ability are available. To develop PCR-based molecular markers for use in marker-assisted selection of fertility restorer lines, two F2 populations derived from crosses R18/ND36 and R9034/ND36 were used to map fertility restoration genes in the two elite fertility restorer lines (R-lines) R18 and R9034. Over 678 SSR markers were analyzed, and markers closely linked to fertility restoration genes were identified. Using SSR markers, a major fertility restoration gene, Rf3, was located on the 1B chromosome in both populations. This gene was partially dominant in conferring fertility restoration in the two restorer lines. SSR markers Xbarc207, Xgwm131, and Xbarc61 are close to this gene. These markers may be useful in marker-assisted selection of new restorer lines with T. timopheevii cytoplasm. Two minor QTL conferring fertility restoration were also identified on chromosomes 5A (in R18) and 7D (in R9034) in two R-lines.  相似文献   

18.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) cv. Saturn into the cytoplasm of H. petiolaris (2n=34) by successive backcrossing, resulted in progenies with indehiscent anthers containing white, rather than normal yellow, pollen. Further backcrossing by cv. Saturn failed to restore pollen shed, suggesting that the male sterility was cytoplasmic. In vivo germination tests of pollen from 23 such plants from eight BC5 lines, indicated complete pollen sterility for 14 plants, but normal seed set, suggesting that female fertility was not affected. Meiosis in all plants examined was normal.Crosses between seven sources of pollen-fertility restorer, one collection of wild H. annuus, and an existing source of cytoplasmic male sterility, resulted in a high frequency of plants with normal pollen shed in all F1 progenies. However, no normal pollen shed was evident in F1 progenies for similar crosses between BC5 male-steriles and three of the seven restorer sources, nor for the single wild H. annuus evaluated. The foregoing suggests that the backcross substitution lines are a new source of cytoplasmic male sterility. The inheritance of restoration of pollen shed was complex and not fully elucidated. Some data suggested that two independent, complementary, dominant genes were required, but others indicated two to three independent, dominant genes.  相似文献   

19.
We have established marker-aided selection strategies for the two major Rf genes (Rf3 and Rf4) governing fertility restoration of␣cytoplasmic-genetic male sterility (CMS) in rice. Polymorphisms between restorer and non-restorer␣lines were observed using RG140/PvuII for Rf3 located on chromosome 1 and S10019/BstUI for Rf4 located on chromosome 10. DNA polymorphisms associated with these two loci in restorer lines of wild abortive (WA), Dissi, and Gambiaca cytoplasm are conserved, suggesting that similar biological processes control pollen fertility in this diverse cytoplasm. Because of their close linkage to Rf genes and distinct banding patterns, STS markers RG140/PvuII and S10019/BstUI are well suited for marker-aided selection, enhanced backcross procedures, and pyramiding of Rf genes in agronomically superior non-restorer lines. The combined use of markers associated with these two loci improved the efficiency of screening for putative restorer lines from a set of elite lines. Positional analyses of Rf4 and the inheritance pattern of the polymorphism in S10019/BstUI suggest that Rf4, governing fertility restoration in WA-CMS in rice, is likely to be the same gene governing fertility restoration in BT- and HL-CMS that has a gametophytic effect, which explains why 100% pollen fertility in hybrids is impossible to attain.  相似文献   

20.
To assess the effect of alien cytoplasm and fertility restorer genes on agronomic and physiological traits in Brassica juncea, cytoplasmic male sterile (CMS) and fertility restorer lines involving five alloplasms in three nuclear backgrounds were constituted through repeated backcrossing. These lines were evaluated along with euplasmic lines for agronomic traits in field experiments. Respiration efficiency of in vitro cultured hypocotyls, and chlorophyll content in leaves were also estimated. Significant adverse effects of trachystoma and catholica cytoplasms on yield‐contributing traits and yield were noticed. The restorer gene corrected the floral defects in CMS trachystoma and restored yield to the level of euplasmic line, while it did so only partly in CMS catholica. Restorer genes had no adverse effect on traits in any of the systems. On the contrary, the Rf gene of moricandia CMS system exerted a positive effect on leaf chlorophyll content. Likewise, in vitro assay indicated the moricandia CMS system as vigorous. The moricandia CMS plants gave higher seed yield perhaps due to overall better vigour and higher leaf chlorophyll content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号