首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Model Maillard reaction products were generated by heating glucose-lysine mixtures (GL) at 150 degrees C for different times (15, 30, 60, and 90 min). Samples were characterized by free lysine, browning, and UV-visible spectra and assessed for antioxidant properties, metal chelating ability, and effects on mineral absorption across Caco-2 monolayers. It was found that the capacity to retard lipid peroxidation in a model linoleic acid emulsion system increased with heating time up to 60 min and then leveled off, whereas the scavenging activity toward 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals increased in early periods of the reaction (15 and 30 min of heating) and decreased thereafter. The iron binding affinity of the different samples was not correlated with antioxidant properties, and iron transport in Caco-2 cells was unchanged between samples. On the contrary, copper chelating activity showed significant correlation with free radical scavenging activity and with copper absorption across intestinal cells. It can be concluded that severe heat treatment of GL mixtures maintained the ability to reduce lipid peroxidation but decreased the free radical scavenging activity. Moreover, antiradical activity, copper chelation ability, and positive effects on copper absorption were correlated and associated to compounds formed at early stages of the Maillard reaction.  相似文献   

2.
The progress of the Maillard reaction and the effect of Maillard reaction products (MRPs) on lipid oxidation in preheated model systems containing pregelatinized starch, glucose, lysine, and soybean oil have been studied during storage. The samples, either containing all components or excluding one or more of them, were heated at 100 degrees C for 90 min and then stored for up to 180 days at 25 degrees C. Browning indices and lipid oxidation were measured, and the results showed that, in samples containing oil, the Maillard reaction had a significant rate also at room temperature and confirmed the ability of MRPs to retard peroxide formation. Under the conditions adopted the rate of the Maillard reaction was increased by the presence of the oil and its oxidation products. The antioxidant action of the MRPs was also evaluated using a peroxide scavenging test based on crocin bleaching. The results demonstrated that antioxidant activity developed with increased browning of the samples.  相似文献   

3.
Compounds possessing antioxidant activity play a crucial role in delaying or preventing lipid oxidation in foods and beverages during processing and storage. Such reactions lead to loss of product quality, especially as a consequence of off-flavor formation. The aim of this study was to determine the antioxidant activity of kilned (standard) and roasted (speciality) malts in relation to phenolic compounds, sugars, amino acids, and color [assessed as European Brewing Convention units (degrees EBC) and absorbance at 420 nm]. The concentrations of sugars and amino acids decreased with the intensity of the applied heat treatment, and this was attributed to the extent of the Maillard reaction, as well as sugar caramelization, in the highly roasted malts. Proline, followed by glutamine, was the most abundant free amino/imino acid in the malt samples, except those that were highly roasted, and maltose was the most abundant sugar in all malts. Levels of total phenolic compounds decreased with heat treatment. Catechin and ferulic acid were the most abundant phenolic compounds in the majority of the malts, and amounts were highest in the kilned samples. In highly roasted malts, degradation products of ferulic acid were identified. Antioxidant activity increased with the intensity of heating, in parallel with color formation, and was significantly higher for roasted malts compared to kilned malts. In kilned malts, phenolic compounds were the main identified contributors to antioxidant activity, with Maillard reaction products also playing a role. In roasted malts, Maillard reaction products were responsible for the majority of the antioxidant activity.  相似文献   

4.
The effect of heat treatment on the antioxidant activity of extracts from Citrus unshiu peels was evaluated. Citrus peels (CP) (5 g) were placed in Pyrex Petri dishes (8.0 cm diameter) and heat-treated at 50, 100, or 150 degrees C for 10, 20, 30, 40, 50, and 60 min in an electric muffle furnace. After heat treatment, 70% ethanol extract (EE) and water extract (WE) (0.1 g/10 mL) of CP were prepared, and total phenol contents (TPC), radical scavenging activity (RSA), and reducing power of the extracts were determined. The antioxidant activities of CP extracts increased as heating temperature increased. For example, heat treatment of CP at 150 degrees C for 60 min increased the TPC, RSA, and reducing power of EE from 71.8 to 171.0 microM, from 29.64 to 64.25%, and from 0.45 to 0.82, respectively, compared to non-heat-treated control. In the case of WE from CP heat-treated at the same conditions (150 degrees C for 60 min), the TPC, RSA, and reducing power also increased from 84.4 to 204.9 microM, from 15.81 to 58.26%, and from 0.27 to 0.96, respectively. Several low molecular weight phenolic compounds such as 2,3-diacetyl-1-phenylnaphthalene, ferulic acid, p-hydroxybenzaldoxime, 5-hydroxyvaleric acid, 2,3-diacetyl-1-phenylnaphthalene, and vanillic acid were newly formed in the CP heated at 150 degrees C for 30 min. These results indicated that the antioxidant activity of CP extracts was significantly affected by heating temperature and duration of treatment on CP and that the heating process can be used as a tool for increasing the antioxidant activity of CP.  相似文献   

5.
The antioxidant properties of water extracts from Cassia tora L. (WECT) prepared under different degrees of roasting were investigated. The water extracts of unroasted C. tora L. (WEUCT) showed 94% inhibition of peroxidation of linoleic acid at a dose of 0.2 mg/mL, which was higher than that of alpha-tocopherol (82%). Water extracts prepared from C. tora L. roasted at 175 degrees C for 5 min and at 200 degrees C for 5 min exhibited 83% and 82%, respectively, inhibition of linoleic acid peroxidation. This result indicated that the antioxidant activities of WECT decreased with longer roasting time or higher roasting temperature. The IC(50) of WEUCT in liposome oxidation induced by the Fenton reaction was 0.41 mg/mL, which was higher than that of alpha-tocopherol (IC(50) = 0.55 mg/mL). WEUCT also exhibited good antioxidant activity in enzymatic and nonenzymatic microsome oxidative systems. The water extracts of roasted C. tora L. increased in the degree of browning and produced chemiluminescence when compared with the unroasted sample. However, the total polyphenolic compounds of WECT decreased after the roasting process finished. In conclusion, the decrease in the antioxidant activity of water extracts from roasted C. tora L. might have been due to the degradation of Maillard reaction products and the decrease of polyphenolic compounds.  相似文献   

6.
The formation of mutagens after the heating of sugar-casein model systems at 120 degrees C was examined by the Ames test, using Salmonella typhimurium strain TA100. Several sugars (glucose, fructose, galactose, tagatose, lactose, and lactulose) were compared in their mutagenicities. Mutagenicity could be fully ascribed to Maillard reaction products and strongly varied with the kind of sugar. The differences in mutagenicity among the sugar-casein systems were caused by a difference in reaction rate and a difference in reaction mechanism. Sugars with a comparable reaction mechanism (glucose and galactose) showed a higher mutagenic activity corresponding with a higher Maillard reactivity. Disaccharides showed no mutagenic activity (lactose) or a lower mutagenic activity (lactulose) than their corresponding monosaccharides. Ketose sugars (fructose and tagatose) showed a remarkably higher mutagenicity compared with their aldose isomers (glucose and galactose), which was due to a difference in reaction mechanism.  相似文献   

7.
Barley phenolic antioxidants change in response to the kilning regimen used to prepare malt. Green malt was kilned using four different regimens. There were no major differences among the finished malts in parameters routinely used by the malting industry, including, moisture, color, and diastatic activity. Ferulic acid esterase activity and free ferulic acid were higher in malts subjected to the coolest kilning regimen, but malt ethyl acetate extracts (containing ferulic acid) contributed only ~5% of the total malt antioxidant activity. Finished malt from the hottest kilning regimen possessed the highest antioxidant activity, attributed to higher levels of Maillard reaction products. Modifying kilning conditions leads to changes in release of bound ferulic acid and antioxidant activity with potential beneficial effects on flavor stability in malt and beer.  相似文献   

8.
The Maillard reaction is important during the heating and processing of foods for its contribution to food quality. To control a reaction as complex as the Maillard reaction, it is necessary to study the reactions of interest quantitatively. In this paper the main reaction products in monosaccharide-casein systems, which were heated at 120 degrees C and pH 6.7, were identified and quantified, and the reaction pathways were established. The main reaction routes were (i) sugar isomerization, (ii) degradation of the sugar into carboxylic acids, and (iii) the Maillard reaction itself, in which not only the sugar itself but also its reaction products react with the epsilon-amino group of lysine residues of the protein. Significant differences in reaction mechanism between aldose and ketose sugars were observed. Ketoses seemed to be more reactive in the sugar degradation reactions than their aldose isomers, and whereas the Amadori product was detected as a Maillard reaction intermediate in the aldose-casein system, no such intermediate could be found in the ketose-casein system. The reaction pathways found were put together into a model, which will be evaluated by kinetic modeling in a subsequent paper.  相似文献   

9.
The influence of the reaction phase on the mechanism of formation of Maillard products was studied by comparison of (13)C-label incorporation patterns of the common products formed in model systems consisting of labeled glycine and D-glucoses subjected to both pyrolysis and heating in aqueous solutions. Pyrolysis experiments were performed at 250 degrees C for 20 s, and aqueous model systems were heated in sealed vials for 3 h at 120 degrees C followed by GC/MS analysis. Label incorporation patterns of the following compounds were analyzed: cyclotene, furanmethanol, acetylpyrrole, 5-methyl-pyrrole, trimethylpyrazine, acetic acid, 3-hydroxy-2-butanone, 2,3-butanedione, and 2-methyl-4, 5-dihydro-3(2H)-furanone. Although pyrolysis reaction produced higher number of products, however, the major pathways of formation of variety of important Maillard products followed the same mechanism under both pyrolytic and aqueous systems. Furthermore, contrary to literature speculations, 2-methyl-4, 5-dihydro-3(2H)-furanone was shown to be formed by ring contraction of 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one, through benzilic acid rearrangement, followed by decarboxylation.  相似文献   

10.
Maillard reaction products (MRPs) were prepared by reacting casein peptides with different concentrations of glucose at 80 °C for up to 12 h. The chemical properties of MRPs and their effects on lipid oxidation in fish oil-in-water emulsions were investigated. Increasing browning development and absorbance in 294 nm in the MRPs caused an increase in DPPH radical scavenging, but a decrease in iron chelation, which could be related to the loss of free amino groups in the peptides. The MRPs produced with longer reaction time or higher glucose concentrations were less effective in inhibiting lipid oxidation in emulsions at pH 7.0 compared to casein peptides alone. However, the antioxidant activity of MRPs in emulsions at pH 3.0 was not decreased by prolonged heating. The bitterness of MRPs was less than that of the original casein peptides, and bitterness decreased with increasing heating time and glucose concentrations. Therefore, the Maillard reaction was a potential method to reduce the bitterness of casein peptides while not strongly decreasing their antioxidant activity.  相似文献   

11.
Microwave heating was used to produce aqueous-soluble components from green, oolong, and black tea residues. Heating at 200-230 degrees C for 2 min extracted 40-50% of polysaccharides and 60-70% of the polyphenols. Solubilization of arabinose and galactose by autohydrolysis occurred with heating above 170 degrees C, whereas heating above 200 degrees C was necessary to solubilize xylose. Catechins were soluble in water by heating at low temperature (110 degrees C); however, new polyphenols having strong antioxidant activity were produced above 200 degrees C. The amount of solubilized materials and antioxidant activity increased with increased fermentation of harvested tea leaves (green tea < oolong tea < black tea). Cutin, a plant biopolyester, remained in the residue after heating as did cellulose and lignin/tannin. The predominant cutin monomer that was recovered was 9,10-epoxy-18-hydroxyoctadecanoic acid, followed by dihydroxyhexadecanoic acid and 9,10,18-trihydroxyoctadecanoic acid.  相似文献   

12.
Phenolic compounds present in crude oil extracts from acai fruit ( Euterpe oleracea) were identified for the first time. The stability of acai oil that contained three concentrations of phenolics was evaluated under short- and long-term storage for lipid oxidation and phenolic retention impacting antioxidant capacity. Similar to acai fruit itself, acai oil isolates contained phenolic acids such as vanillic acid (1,616 +/- 94 mg/kg), syringic acid (1,073 +/- 62 mg/kg), p-hydroxybenzoic acid (892 +/- 52 mg/kg), protocatechuic acid (630 +/- 36 mg/kg), and ferulic acid (101 +/- 5.9 mg/kg) at highly enriched concentrations in relation to acai pulp as well as (+)-catechin (66.7 +/- 4.8 mg/kg) and numerous procyanidin oligomers (3,102 +/- 130 mg/kg). Phenolic acids experienced up to 16% loss after 10 weeks of storage at 20 or 30 degrees C and up to 33% loss at 40 degrees C. Procyanidin oligomers degraded more extensively (23% at 20 degrees C, 39% at 30 degrees C, and 74% at 40 degrees C), in both high- and low-phenolic acai oils. The hydrophilic antioxidant capacity of acai oil isolates with the highest phenolic concentration was 21.5 +/- 1.7 micromol Trolox equivalents/g, and the total soluble phenolic content was 1252 +/- 11 mg gallic acid equivalents/kg, and each decreased by up to 30 and 40%, respectively, during long-term storage. The short-term heating stability at 150 and 170 degrees C for up to 20 min exhibited only minor losses (<10%) in phenolics and antioxidant capacity. Because of its high phenolic content, the phytochemical-enriched acai oil from acai fruit offers a promising alternative to traditional tropical oils for food, supplements, and cosmetic applications.  相似文献   

13.
Polyphenol oxidase (PPO) from eggplant was extracted and partially purified by a two-step fractionation-precipitation using ammonium sulfate and phenylsepharose hydrophobic interaction chromatography. The eggplant PPO extract was characterized concerning its kinetic properties. Optimal conditions to obtain Maillard reaction products (MRPs) with a maximal inhibitory potency (IP) toward PPO activity were determined using the surface response methodology and a four-factor and five-level experimental design. The MRPs were prepared from cysteine (0.25 M) and glucose (0-1 M), at several initial pH values (2-6) and at differing heating times (3-19 h) and temperatures (95-115 degrees C). The maximal IP was obtained after heating a model system of glucose/cysteine (1/0.25 M) at pH 2 for 3 h 20 min at 115 degrees C. The soluble part of this MRP, called MRP(IPmax), was a noncompetitive inhibitor toward eggplant PPO. The IP of MRP(IPmax) on PPO activity was very potent as compared to that displayed by benzoic, p-coumaric, and t-cinnamic acids, as well as sorbic acid and 4-hexylresorcinol. The activity of preincubated PPO at 0 degrees C with MRP(IPmax) was only slightly restored after dialysis or gel filtration.  相似文献   

14.
Sugar-casein glycation products (GPs) were generated by Maillard reaction (MR) with different monosaccharide sources [e.g., glucose (Glc), fructose (Fru), and ribose (Rib)] and prolonged heating (e.g., 27 days at 55 degrees C) to produce Maillard reaction products (MRPs) that varied in opponent (L, a, b) color measurement and changes in pH, available lysine, and amino-sugar ratio. Theses results signified different rates of three sugar and casein glycation. Sugar-casein GPs from aldohexose, ketohexose, and aldopentose sugar sources were recovered on day 18 of heating and compared for bioactive properties using human embryonic intestinal cell (Int-407) and adenocarcinoma cell (Caco-2) lines. Glu- and Fru-casein GPs produced significant (p < 0.05) decreases in antioxidant superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase enzyme activities in the Int-407 cell line, whereas no effect on antioxidant enzymes was obtained from Rib-casein GP. Moreover, the Caco-2 cell antioxidant enzyme status was not affected by the presence of sugar-casein GPs, regardless of sugar source. The reduction in antioxidant enzyme activity of Int-407 cells by Glu and Fru- casein GPs corresponded to a significant (p < 0.05) reduction in Int-407 cell viability. In contrast, no change in Caco-2 cell viability was observed with sugar-casein GP. This finding demonstrates that the noted variable cytotoxic, sugar specific effects of casein GP were related to reductions in critical antioxidant enzyme activities. Moreover, the source of intestinal cell line was an important factor to show the effect of sugar-casein GPs on redox-related cytotoxicity.  相似文献   

15.
The influence of the polyphenolic compound epicatechin on Maillard chemistry was investigated under simulated roast conditions (10% moisture at 220 degrees C for 10 min). Quantitative gas chromatography (GC) analysis indicated that the addition of epicatechin to glucose or fructose/glycine model systems significantly reduced the generation of hydroxyacetone, 2-methylpyrazine, 2,3,5-trimethylpyrazine, furfural, 2-acetylfuran, 5-methylfurfural, 2(5H)-furanone, 2-acetylpyrrole, and furfuryl alcohol. These analytes were reported to be primarily generated from intact C2, C3, C4, C5, and C6 sugar fragments based on gas chromatography/mass spectrometry quantitative isotopomeric analysis of a 1:1 13C6:12C6 hexose sugar/glycine model system. Liquid chromatography/mass spectrometry qualitative isotopomeric analysis of a 1:1 13C6:12C6 hexose sugar/glycine/epicatechin model systems confirmed epicatechin reacted with Maillard reactants in the model systems; two main reaction products were reported, epicatechin-C5 and -C6 sugar fragment adducts. In addition, LC/MS analysis of a model system consisting of only 3-deoxy-2-hexosulose and epicatechin identified 3-deoxy-2-hexosulose as a precursor of the epicatechin-C5 and -C6 sugar fragment adducts reaction products. These results imply that epicatechin quenched 3-deoxy-2-hexosulose (a key source C6 to C1 sugar fragments) and consequently inhibited Maillard product formation.  相似文献   

16.
High-pressure effects on Maillard reaction between glucose and lysine   总被引:5,自引:0,他引:5  
Glucose-lysine model systems prepared over a range of pH values (5-10) in unbuffered and buffered media were incubated at 60 degrees C either under atmospheric pressure or at 400 MPa. The results obtained showed that high pressure affected in different ways the different stages of the Maillard reaction and that such effects were strongly influenced by pressure-induced changes in the pH of the systems. In unbuffered media, at an initial pH < or =8.0, the formation of Amadori rearrangement products (ARP) was not considerably affected by pressure, whereas the intermediate and advanced stages of the Maillard reaction were suppressed, suggesting a retardation of the degradation of the ARP. In buffered media, at pH values < or =8.0, pressure slowed the Maillard reaction from the initial stages. These effects are attributed to the pH drop caused by the pressure-induced dissociation of the acid groups. In unbuffered and buffered media at initial pH = 10.2, high pressure accelerated the formation and subsequent degradation of ARP, leading to increased levels of intermediate and advanced reaction products.  相似文献   

17.
In the course of studies on the antioxidant mechanism of curcumin, its radical reaction was investigated. Curcumin was reacted with radical species, which were generated from the pyrolysis of 2, 2'-azobis(isobutyronitrile) under an oxygen atmosphere, and the reaction products from curcumin were followed by HPLC. The reaction at 70 degrees C gave several products, three of which were structurally identified to be vanillin, ferulic acid, and a dimer of curcumin after their isolation. The dimer was a newly identified compound bearing a dihydrofuran moiety, and its chemical structure was elucidated using spectroscopic analyses, especially 2D NMR techniques. A mechanism for the dimer production is proposed and its relation to curcumin's antioxidant activity discussed. The time course and gel permeation chromatography studies of the reaction were also investigated, and the results indicate that the dimer is a radical-terminated product in the initial stage.  相似文献   

18.
Inhibition of the heat-induced cholesterol oxidation at 150 degrees C by incorporation of quercetin was kinetically studied. Results showed that without quercetin, the cholesterol oxidation products (COPs) concentration increased with increasing heating time. A low amount (0.002%, w/w) of quercetin was effective in inhibiting the formation of COPs during the initial heating period (< or =30 min) at 150 degrees C. However, after prolonged heating (30-120 min), a low antioxidant activity was observed because of the degradation of quercetin. When using nonlinear regression models for kinetic study of cholesterol oxidation in the absence of quercetin, the epoxidation showed the highest rate constant (h(-1) = 683.1), followed by free radical chain reaction (h(-1) = 453.5), reduction (h(-1) = 290.3), dehydration (h(-1) = 155.5), triol dehydrogenation (h(-1) = 5.35), dehydrogenation (h(-1) = 0.68), thermal degradation (h(-1) = 0.66), and triol formation (h(-1) = 0.38). However, in the presence of quercetin, the reaction rate constants (h(-1)) for epoxidation (551.4), free radical chain reaction (111.7), and thermal degradation (0.28) were reduced greatly. The kinetic model developed in this study can be used to predict the inhibition of COPs by quercetin during the heating of cholesterol.  相似文献   

19.
The measurement of antioxidant activity was limited to soluble components to date. Functional groups, which are bound to insoluble matters, may exert antioxidant activity by a surface reaction phenomenon. This hypothesis was tested on the insoluble matters of foods, food ingredients, and Maillard reaction products (MRPs). Insoluble matters were prepared by consecutive washes with water and methanol followed by a lyophilization of the insoluble residue. The measurement was performed by a new procedure using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) colored radicals. These insoluble matters always showed antioxidant activity. Alkali hydrolysis reduced up to 90% the antioxidant activity of cereal-based insoluble matters, thus confirming that fiber-bound compounds have a major role in their antioxidant activity. The antioxidant activity of the insoluble MRPs was not significantly affected by processing conditions, but severe treatments increased the ratio between insoluble and soluble matters. The contribution of insoluble matter to total antioxidant activity was limited for fruits and vegetables, but it was relevant for cereal-based foods and increased over 50% for dietary-fiber-rich ingredients.  相似文献   

20.
During milk processing, proteins can be severely modified by oxidation, condensation, and Maillard reaction, leading to changes in their nutritional and technological properties. In this study, major modifications of beta-lactoglobulin, formed during the heating and processing of milk, were screened by mass spectrometry. For this purpose, beta-lactoglobulin was isolated from the milk samples by gel electrophoresis and analyzed by matrix-assisted laser desorption/ionization mass spectrometry after in-gel digestion with endoproteinase AspN. In heated milk, lactulosyllysine was detected at lysine 47 and 138 or 141 as well as methionine sulfoxide at methionine 7, 24, and 145. All these modifications increased gradually when raw milk was heated for 20, 40, and 60 min at 120 degrees C. The major modifications were also relatively quantified in dairy products, such as raw, high-temperature, ultra-high-temperature, sterilized, and condensed milk as well as infant formulas. The highest contents of lactulosyllysine at Lys47 were detected in powdered infant formulas, whereas lactulosyllysine at Lys138/141 was predominant in condensed milk samples. Methionine sulfoxide at Met7 and Met24 showed a trend toward higher modification rates in more severely processed products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号