首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The decomposition of the litter layer and the humic mineral horizon from a beech forest site was studied at temperatures of 5, 12, and 22°C for both substrates and additionally at 32°C for beech litter. Weight losses, basal and substrate-induced CO2 production, and the extractable biomass C were monitored periodically during a 2-year incubation period. Weight losses and microbial activity were controlled by substrate quality and temperature. No significant differences were found between 5 and 12°C in decomposition, biomass C, and the metabolic quotient in the humic mineral horizon. The decay of beech litter and the humic mineral horizon was highest at 22°C but was faster in the litter material by a factor of 2.9 on average. In the glucose-amended samples, the relationship among the CO2-C fluxes was 1:1:2:3 at temperatures of 5, 12, 22, and 32°C in the litter layer, and 1: 2: 2.4 at 5, 12, and 22°C in the A horizon, respectively. The microbial activity in the humic mineral horizon was only 2–11% of that in the litter layer. The level of biomass C remained constant over 1 year and no significant differences were obtained from the 12 and 22°C treatments in the litter layer.  相似文献   

2.
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2-12 °C)>Q10(12-22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2-12 °C)<Q10(12-22 °C)) in the control samples. Metabolic quotient and the positive relationship between skeletal muscle tissue mass loss and cumulative CO2 evolution suggest that tissue decomposition was most efficient at 2 °C. These phenomena may be due to lower microbial catabolic requirements at lower temperature.  相似文献   

3.
Olive-tree leaves (OL) were mixed with olive press cake (OPC) and extracted olive press cake (EPC) at 1:1 dw/dw ratios to prepare two composting mixtures (OL+OPC and OL+EPC). Both CO2–C evolution and fluorescein diacetate (FDA) hydrolysis, determined as estimates of the microbial activity during composting, were related to temperature fluctuations in the compost piles, showing greater values at the temperature peaks, compared to the end, of each thermophilic phase. This, however, was only shown after handling and incubating samples at the temperatures of the compost mixtures at the sampling times and not at a low standard temperature. Incubating samples from thermophilic phases at low standard temperatures resulted in underestimation of the microbial activity occurring during composting. The effect of incubation temperature was less dramatic for FDA hydrolysis compared to CO2–C evolution measurements, probably reflecting the reduced dependence of enzymes involved in FDA hydrolysis on the respective temperatures. However, FDA hydrolysis was a less sensitive indicator of microbial activity, probably due to extracellular cleavage of fluorescein by persistent esterases, at lowered microbial activity phases. Total microbial biomass, estimated by the fumigation–extraction method, was not consistently related to temperature fluctuations during composting and showed a clear increase at the end of composting, probably resulting from a large slow-growing mycelial community colonising the end products. Since high temperatures did not induce significant non-microbial CO2–C release and FDA degradation, we propose the performance of microbial activity measurements during thermophilic composting phases at the actual temperatures evolving in the composts.  相似文献   

4.
Maize straw and pea straw were added to five Pakistani soils from a gradient in salinity to test the following hypotheses: Increasing salinity at high pH decreases proportionally (1) the decomposition of added straw and (2) the resulting net increase in microbial biomass. In the non-amended control soils, salinity had depressive effects on microbial biomass C, biomass N, but not on biomass P and ergosterol. The ratios microbial biomass C-to-N and biomass C-to-P decreased consistently with increasing salinity. In contrast, the ergosterol-to-microbial biomass C ratio was constant in the four soils at pH>8.9, but nearly doubled in the most saline, but least alkaline, soil (pH 8.2). The addition of the maize and pea straw always increased the contents of microbial biomass C, biomass N, biomass P and ergosterol, but without clear effects of salinity. Highest mean contents of microbial biomass C and biomass N were measured at day 0, immediately after the straw was added. Straw amendments increased the CO2 evolution rates of all five soils without any effect of salinity. The same was true for total C and total N in the two fractions of particulate organic matter (POM) 63–400 μm and >400 μm. Lowest percentage of straw-derived CO2-C and highest recoveries of POM-C and POM-N were observed in the maize straw treatment and the reverse in the pea straw treatment. Yield coefficients were calculated for maize and pea straw based on the assumption that the balance gap between CO2 and the amount of POM can be fully assigned to microbial products.  相似文献   

5.
On examining the changes in lamellae and stroma nitrogen during leaf development, it is demonstrated that the lamellae and stroma fractions ofrice chloroplasts develop in quite different ways. In the case of stroma, the stroma materials existing in the leaf section which has just emerged from a leaf sheath are quite limited and the major part of this fraction is derived from the successive protein synthesis, i.e., the synthesis of this fraction was markedly increased during leaf expansion. This developmental pattern of the stroma coincided with the changes in the high-molecular-weight water soluble leaf protein, which seemed to be mainly composed of Fraction I protein. A rapid increase in stroma nitrogen was found to be a major cause for an increase in the leaf nitrogen content during leaf development.

On the other hand, the developmental pattern of the lamellae fraction was characterized by the fact that a considerable amount of this fraction had already been prepared when a leaf emerged from a leaf sheath and thereafter, no outstanding increase was seen compared to that of the stroma. This developmental pattern of the lamellae fraction resulted in a lowering of the proportion of lamellae nitrogen to the total leaf nitrogen during leaf development.

A great change in the lamellae-stroma composition of chloroplasts was observed. The proportion of stroma nitrogen to the total chloroplast nitrogen tended to increase as a leaf develops. Since the developmental stage varied according to the regions of a leaf, variation of the lamellaestroma composition was seen even within a leaf, i.e., the proportion of stroma nitrogen increased from base to tip.

In order to compare the synthetic rate of chlorophyll with those of the stroma and lamellae fractions, the changes in the ratios of stroma nitrogen/chlorophyll and lamellae nitrogen/chlorophyll were examined. The lamellae nitrogen/chlorophyll ratio decreased as a leaf developed, whereas the stroma nitrogen/chlorophyll ratio increased. Then the synthetic rates of these fractions during leaf development turned out to be of the same order as the stroma fraction, chlorophyll, lamellae fraction.  相似文献   

6.
  总被引:1,自引:0,他引:1  
Summary Two borings (20 m depth) were performed in a sandy-clayey soil over a limestone bed and in a sandy soil with lumps of clay in some depths. Bacteria were found in the deeper soil layers of both profiles. The methods used to detect bacteria were those normally used for topsoil layers, plate counts of bacteria, ATP content, and direct microscopy. Measurements of CO2 evolution showed that the potential for bacterial activity was present in all depths of the two profiles. However, the activity was strongly dependent on the presence of easily available organic C. An indication of the denitrification potential was obtained by measuring the N2O evolution. Under aerobic incubation without the addition of glucose, N2O was detected only in the topsoil. When glucose was added to the soil samples, N2O was found at a low level in the deeper soil layers. Under anaerobic incubation, N2O was detected in all deeper layers, and increased markedly when glucose was added to the soil samples.  相似文献   

7.
Our knowledge of the agricultural sustainability of the millennia-old mountain oases in northern Oman is restricted in particular with respect to C and N turnover. A laboratory study was conducted (1) to analyse the effects of rewetting and drying on soil microorganisms after adding different manures, (2) to investigate the effects of mulching or incorporating of these manures, and (3) to evaluate the relationships between C and N mineralisation rates and manure quality indices. During the first 9-day rewetting and drying cycle, i.e. the mulch period, the content of extractable organic C decreased by approximately 40% in all four treatments. During the second 9-day rewetting and drying cycle, i.e. the incorporation period, this fraction decreased insignificantly in almost all treatments. The control and mature manure treatments form the first pair with a low percentage of total organic C evolved as CO2 (0.3% in 18 days) and a considerable percentage of total N mineralised as NH4 and NO3 (1% in 18 days), the fresh and immature manure treatments form the second pair with a higher amount of total organic C evolved as CO2 (0.5% in 18 days) and no net N mineralisation. During the first 9-day rewetting and drying cycle, the contents of microbial biomass C and biomass N increased by approximately 150% in all four treatments. During the second 9-day rewetting and drying cycle, no further increase was observed in the control and immature manure treatments and a roughly 30% increase in the other two treatments.  相似文献   

8.
  总被引:4,自引:4,他引:0  
The relationship between the fungal: bacterial biomass ratio and the metabolic quotient (qCO2) was studied in three different soils. In addition, the effect of the fungal: bacterial biomass ratio on the relationship between CO2 evolution and the size of the soil microbial biomass was examined. Soil samples were collected from three experimental fields amended with various organic materials (Yatsugatake, Ibaraki, and Tochigi fields). The range of the fungal:bacterial biomass ratio in the Yatsugatake and Ibaraki fields was small (1.54–2.24 and 1.11–1.71, respectively), but it was large in the Tochigi field (1.18–3.75). We found a high negative correlation between this ratio and the metabolic quotient (qCO2=2.10–0.361 (fungal:bacterial biomass ratio), R=–0.851, P<0.01) in the Tochigi field. Therefore, we suggest tha qCO2 decreases with an increase in the fungal:bacterial biomass ratio, which may be due to a higher efficiency of substrate C use by fungal flora in comparison with bacterial flora. In the Yatsugatake and Ibaraki fields, there was a high positive correlation between CO2 evolution and total microbial biomass. In contrast, no correlation was observed between these two parameters in the Tochigi field, probably reflecting the wide range of values for the fungal:bacterial biomass ratio. From the results obtained, we suggest that the fungal: bacterial biomass ratio is an important factor regulating the relationship between CO2 evolution and the size of the microbial biomass.  相似文献   

9.
    
Short-term response of soil C mineralization following drying/rewetting has been proposed as an indicator of soil microbial activity. Houston Black clay was amended with four rates of arginine to vary microbial responses and keep other soil properties constant. The evolution of CO2 during 1 and 3 days following rewetting of dried soil was highly related to CO2 evolution during 10 days following chloroform fumigation (r2 = 0.92 and 0.93, respectively) which is a widely used method for soil microbial biomass C, which disrupts cellular membranes. This study suggest that the release of CO2 following rewetting of dried soil with no amendments other than heat and water can be highly indicative of soil microbial activity and possibly be used as a quantitative measurement of soil biological quality in Houston Black soils.  相似文献   

10.
Summary The effects of the presence of Folsomia candida on substrate-induced respiration, CO2-C evolution, bacterial count and NH 4 + -N were investigated in a grassland soil. Differences in these parameters, with the exception of NH 4 + , were correlated with the age of the collembolan Folsomia candida. In the presence of juvenile animals total CO2-C evolution was enhanced, but substrate-induced respiration and the bacterial count were unchanged. In fumigated soil with imagos, substrate-induced respiration and the number of bacteria were increased, but total CO2-C evolution was unaltered. Different food selection strategies between adults and juvenile animals may explain the results.  相似文献   

11.
A laboratory incubation experiment was conducted to demonstrate that reduced availability of CO2 in soil may be an important factor limiting nitrification. Soil samples were incubated at 30±2 °C for 20 days using vessels with or without the arrangement for trapping CO2 in sodium hydroxide. This arrangement led to a decrease of ca. 96% in the CO2 concentration of the headspace, with a range of 95.7-97.5 at different sampling intervals. In the absence of trapping arrangement, CO2 concentration of the headspace varied from 580 to 859 ppm, i.e. 62-140% higher than that of the outside atmosphere (358 ppm). The nitrification process was significantly retarded under conditions of reduced CO2 concentration; reduction varied from 8 to 62% at different incubation intervals. The results of the study led to the inference that decreased availability of CO2 in closed vessels (with arrangement for trapping CO2) will have a significant bearing on the process of nitrification and hence on the overall dynamics of N transformations.  相似文献   

12.
    
Summary In an incubation experiment, soil was amended to induce changes in microbial growth and enzyme production. The soluble fraction of newly produced protease (extracellular enzyme) was separated from the soil by a sterilized millipore filter. The activity of total and soluble protease, ATP content, number of acridine orange-stained bacteria, and CO2 evolution in soils were measured during the incubation. Increases in soluble and total protease activities in soils amended with agar and glucose coincided with increases in ATP content, total counts of bacteria, growth of fungi, and CO2 evolution. In amended soils, the activity of soluble extracellular protease was about 30% of the total protease activity. Soluble extracellular protease activity was highly correlated with total protease activity (r=0.78, P<0.01), ATP content (r=0.74, P<0.01), and total counts of bacteria (r=0.94, P<0.01) during the first 6 days of incubation. Hence measurement of microbial biomass appeared to be an index for the level of extracellular enzymes in soil.  相似文献   

13.
    
A field study was conducted to investigate the long-term effect of surface application of sewage sludge composts vs chemical N fertilizer on total N, total C, soluble organic C, pH, EC, microbial biomass C and N, protease activity, deaminase activity, urease activity, gross and net rates of N mineralization and nitrification, CO2 evolution, and N2O production. Soil samples were taken from five depths (0–15, 15–20, 20–30, 30–40, and 40–50 cm) of a long-term experiment at the University of Tokyo, Japan. Three fields have been receiving sewage sludge composted with rice husk (RH), sawdust (SD), or mixed chemical fertilizer NPK (CF), applied at the rate of 240 kg N ha–1 each in split applications in summer and autumn since 1978. Significantly higher amounts of total N and C and soluble organic C were found in the compost than in the CF treatments up to the 40-cm soil depth, indicating improved soil quality in the former. In the CF treatment, soil pH values were significantly lower and electrical conductivity values were significantly higher than those of compost-treated soils of up to 50 cm depth. Soil microbial biomass C and N, CO2 evolution, protease, deaminase, and urease activities were significantly higher in the compost than in the CF treatments due to greater availability of organic substrates that stimulated microbial activity. Gross N mineralization rates determined by 15N dilution technique were eight and five times higher in the SD and RH treatments than in the CF treatment, respectively, probably due to high levels of microbial and enzyme activities. Net N mineralization rates were also significantly higher in the compost treatments and were negative in the CF treatment indicating immobilization. Net nitrification rates were higher in compost treatments and negative in the CF treatment. Nitrous oxide productions from compost treatments were higher than the CF treatment due to the greater availability of mineral N as a result of higher mineralization and nitrification rates and soluble organic C in the former. Most of the measured parameters were highest in the surface soil (0–15 cm) and were significantly higher in the SD treatment than in the RH treatment.  相似文献   

14.
  总被引:1,自引:0,他引:1  
We studied in laboratory microcosms (intact soil cores) N2O and CO2 emissions from four different agricultural soil types (organic soil, clay, silt and loam) at low temperatures with or without freezing-thawing events. When the temperature of the frozen soil cores was increased stepwise from −8 °C the N2O emissions began to increase at −0.5 °C, and peaked at −0.1 °C in the organic, clay and silt soils, and at +1.6 °C in the loam soils. However, a stepwise decrease in soil temperature from +15 °C also induced an increase in the N2O emissions close to the 0 °C. These emissions peaked between −0.4 and +2.5 °C depending on the soil type and water content. However, the emission maxima were from 2 to 14.3% of those encountered in the experiments where frozen soils were thawed. Our results show that in addition to the well-documented thawing peak, soils also can have a maximum in their N2O emission near 0 °C when soil temperature decrease. These emissions, however, are less than those emitted from thawing soils. The correlations between the N2O and CO2 emissions were weak. Our results suggest that N2O is produced in soils down to a temperature of −6 °C.  相似文献   

15.
A 20-day incubation experiment with continuous cereal (CC) versus cereal legume (CL) rotation soils of two semi-arid Sub-Saharan sites (Fada-Kouaré in Burkina Faso, F, and Koukombo in Togo, K) were carried out to investigate the effects of rewetting on soil microbial properties. Site- and system-specific reactions of soil microorganisms were observed on cumulative CO2 production, adenylates (ATP, ADP, and AMP), microbial biomass C and N, ergosterol, muramic acid and glucosamine. Higher values of all parameters were found in the CL rotation soils and in both soils from Fada-Kouaré. While the inorganic N concentration showed only a system-specific response to rewetting, the adenylate energy charge (AEC) showed only a site-specific response. ATP recovered within 6 h after rewetting from ADP and AMP due to rehydration of microorganisms and not due to microbial growth. Consequently, no N seemed to be immobilized by microorganisms and all NO3 in the soil was immediately available to the plants. The fungal cell-membrane component ergosterol was three (CC) and five (CL) times larger at Fada than in the respective soils at Koukombo. The concentrations of the bacterial cell-wall component muramic acid were by 20% and of mainly fungal glucosamine by 10% larger in the CL rotation soils than in the CC soils. This indicates long-shifts in the microbial community structure.  相似文献   

16.
Summary We have developed a simple method for the determination of gaseous compounds that reflect microbial activity in soil, as affected by factors such as the presence of an organic amendment (peat) or a variation in soil moisture. The method is based on a gas chromatographic analysis of the headspace of vials containing the soil under examination. A single gas chromatograph can detect up to 10 different gases. As expected, after peat was added to the soil, CO2 evolution and O2 uptake increased significantly. Positive relationships were found between the evolution of N2O, and soil moisture and the amount of peat added to the soil. Both the these variables influenced the CO2:O2 ratio. The results given by this method show high reproducibility.  相似文献   

17.
A 42-day incubation was conducted to study the effect of glucose and ammonium addition adjusted to a C/N ratio of 12.5 on sugarcane filter cake decomposition and on the release of inorganic N from microbial residues formed initially. The CO2 evolved increased in comparison with the non-amended control from 35% of the added C with pure +5 mg g−1 soil filter cake amendment to 41% with +5 mg g−1 soil filter cake +2.5 mg g−1 soil glucose amendment to 48% with 5 mg g−1 soil filter cake +5 mg g−1 soil glucose amendment. The different amendments increased microbial biomass C and microbial biomass N within 6 h and such an increase persisted. The fungal cell-membrane component ergosterol initially showed a disproportionate increase in relation to microbial biomass C, which completely disappeared by the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added, in contrast to the control treatment. After day 14, the immobilized N was re-mineralized at rates between 1.3 and 1.5 μg N g−1 soil d−1 in the treatments being more than twice as high as in the control treatment. This means that the re-mineralization rate is independent of the actual size of the microbial residues pool and also independent of the size of the soil microbial biomass.  相似文献   

18.
In the daytime, the CO2 concentration in the air close to the water surface of a ponded paddy field was lowest and it increased with the distance above the water surface, while an inverse relation was observed in the nighttime. On the other hand, the pH of the ponded water changed significantly throughout a day and was expected to affect atmospheric CO2 in the vicinity of the water surface, because the solubility of CO2 in water depends on the pH. In this study, we investigated the relationship between the changes in the pH of the ponded water and the response of the CO2 concentration in the air above the water. The pH of the ponded water of the paddy field increased in the daytime and decreased in the nighttime, so that the water was alkaline in the daytime and weakly acidic in the nighttime. We found that the daily changes in the atmospheric CO2 concentration gradient almost corresponded to the daily changes in pH. The increase of the pH of the ponded water in the daytime was due to the absorption of dissolved CO2 by photosynthetic bacteria and micro-algae within the ponded water. Furthermore, we compared the pH with RpH, defined as the pH at which the CO2 concentration of the water is in equilibrium with that of the air, to determine whether CO2 was absorbed by or emitted from the ponded water. In the daytime, the pH value of the ponded water was higher than that of the RpH, and the water could therefore absorb CO2 , whereas during the nighttime, since the pH value of the ponded water was lower than that of the RpH, the water was expected to emit CO2. These results show that the ponded water absorbed CO2 from the air above the water surface in the daytime and emitted CO2 in the nighttime.  相似文献   

19.
在空闲拱棚和黄瓜日光温室内,分别研究了化学反应法(H2SO4+NH4HCO3)、煤球燃烧法和颗粒CO2气肥3种肥源的性能,并与液体CO2进行成本比较,结果表明:化学反应法产气迅速,设备折旧成本较低;煤球燃烧法产气速度中等,原料成本最低;颗粒CO2气肥产气速度较慢且不易调控,原料成本最高。考虑化学反应产物的再利用因素,化学反应法、煤球燃烧法和液体CO2 3种肥源总成本接近,但从生态、节能、成本和效果等方面综合评价,煤球燃烧法原料丰富、成本低廉,较符合我国目前的设施、经济、资源和技术条件。  相似文献   

20.
The climate is undergoing rapid changes with rising atmospheric CO2 concentration, increasing temperatures and changes in the hydrological regimes resulting in more frequent and intense drought periods. These three climate change factors will, separately and in combination, affect the biotic and abiotic components of soil communities. This paper reviews the impact of climate change on field communities of enchytraeids with special emphasis on Cognettia sphagnetorum because most relevant studies have involved this species. C. sphagnetorum prefers cold and wet environments and several studies suggest that reductions of soil moisture may have dramatic consequences for C. sphagnetorum and other enchytraeid species. Effects of changing temperatures are less clear partly because thermal conditions influence soil moisture, which complicate the predictions of the outcome from such changes. The predicted increasing annual mean temperature may be stimulating and expand the season for growth and reproduction of enchytraeids; on the other hand, an increased frequency of extreme weather events, with heat waves during summer and bare soil freezes during autumn and spring, may occasionally cause severe mortality. Stimulating effects of increased atmospheric CO2 have been observed, perhaps due to increased food availability via root and litter production. However, effects of CO2 are also influenced by moisture and temperature. Generally, there is a lack of research looking into the complicated interactions between various climate change factors, and little is known about the potential of enchytraeids to adapt to a changing climate. Existing data suggest that C. sphagnetorum is not capable of adapting to a drier climate, thus, a decline in abundance and distribution of this species is possible. Since enchytraeids are of ecological significance in some types of habitats, a reduction may result in serious disruption in the functioning of these decomposer communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号