首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Olive-tree leaves (OL) were mixed with olive press cake (OPC) and extracted olive press cake (EPC) at 1:1 dw/dw ratios to prepare two composting mixtures (OL+OPC and OL+EPC). Both CO2–C evolution and fluorescein diacetate (FDA) hydrolysis, determined as estimates of the microbial activity during composting, were related to temperature fluctuations in the compost piles, showing greater values at the temperature peaks, compared to the end, of each thermophilic phase. This, however, was only shown after handling and incubating samples at the temperatures of the compost mixtures at the sampling times and not at a low standard temperature. Incubating samples from thermophilic phases at low standard temperatures resulted in underestimation of the microbial activity occurring during composting. The effect of incubation temperature was less dramatic for FDA hydrolysis compared to CO2–C evolution measurements, probably reflecting the reduced dependence of enzymes involved in FDA hydrolysis on the respective temperatures. However, FDA hydrolysis was a less sensitive indicator of microbial activity, probably due to extracellular cleavage of fluorescein by persistent esterases, at lowered microbial activity phases. Total microbial biomass, estimated by the fumigation–extraction method, was not consistently related to temperature fluctuations during composting and showed a clear increase at the end of composting, probably resulting from a large slow-growing mycelial community colonising the end products. Since high temperatures did not induce significant non-microbial CO2–C release and FDA degradation, we propose the performance of microbial activity measurements during thermophilic composting phases at the actual temperatures evolving in the composts.  相似文献   

2.
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2-12 °C)>Q10(12-22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2-12 °C)<Q10(12-22 °C)) in the control samples. Metabolic quotient and the positive relationship between skeletal muscle tissue mass loss and cumulative CO2 evolution suggest that tissue decomposition was most efficient at 2 °C. These phenomena may be due to lower microbial catabolic requirements at lower temperature.  相似文献   

3.
The decomposition of the litter layer and the humic mineral horizon from a beech forest site was studied at temperatures of 5, 12, and 22°C for both substrates and additionally at 32°C for beech litter. Weight losses, basal and substrate-induced CO2 production, and the extractable biomass C were monitored periodically during a 2-year incubation period. Weight losses and microbial activity were controlled by substrate quality and temperature. No significant differences were found between 5 and 12°C in decomposition, biomass C, and the metabolic quotient in the humic mineral horizon. The decay of beech litter and the humic mineral horizon was highest at 22°C but was faster in the litter material by a factor of 2.9 on average. In the glucose-amended samples, the relationship among the CO2-C fluxes was 1:1:2:3 at temperatures of 5, 12, 22, and 32°C in the litter layer, and 1: 2: 2.4 at 5, 12, and 22°C in the A horizon, respectively. The microbial activity in the humic mineral horizon was only 2–11% of that in the litter layer. The level of biomass C remained constant over 1 year and no significant differences were obtained from the 12 and 22°C treatments in the litter layer.  相似文献   

4.
Summary The effects of the presence of Folsomia candida on substrate-induced respiration, CO2-C evolution, bacterial count and NH 4 + -N were investigated in a grassland soil. Differences in these parameters, with the exception of NH 4 + , were correlated with the age of the collembolan Folsomia candida. In the presence of juvenile animals total CO2-C evolution was enhanced, but substrate-induced respiration and the bacterial count were unchanged. In fumigated soil with imagos, substrate-induced respiration and the number of bacteria were increased, but total CO2-C evolution was unaltered. Different food selection strategies between adults and juvenile animals may explain the results.  相似文献   

5.
In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g-1)=0.227+0.458 FE microbial C (mg g-1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P<0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.  相似文献   

6.
In most parts of tropical Africa, conversion of forests into agricultural lands is often accompanied by drastic changes in soil properties. However, little study has been done to examine changes in biological properties of soils from different land-uses in response to addition of C and nutrients. We conducted this study with the aim of investigating nutrient limitations for microbial activity in soils from agricultural (farm) and forest land-uses at Wondo Genet (Ethiopia) after amendment with C and limiting nutrients. We measured CO2 respiration rates from the soils incubated in the laboratory before and after addition of glucose-C together with N and/or P in excess and/or limiting amounts. Based on the respiration kinetics, we determined the basal respiration (BR), substrate-induced respiration (SIR), specific-microbial growth rate (μ), respiration maxima (Rmax), % of glucose-C respired, and microbially available N and P in the soils. We found that N was more limiting than P for the micro-biota in the soils considered, suggesting the presence of ample amounts of indigenous P that could be extracted by the micro-biota, if provided with C. Addition of P resulted in a respiration pattern with two peaks, presumably reflecting different N pools being available over time. The SIR, Respiration maxima, μ and microbially available P were higher in soils from the farm, while %C respired was higher in the forest, suggesting increased C costs for micro-biota to be able to utilize nutrients that are strongly bound to organic-matter or clay minerals. Depending on land-use, about 49-69% of added glucose-C was respired during two and a half weeks time, but differences between N or P additions were not significant. The correlation between soil physical and chemical properties and respiration parameters, however, depended on whether N or P was limiting. We concluded that examining the soil respiration kinetics could provide vital information on nutritional status of micro-organisms under different land-uses and on potential availability of nutrients to plants.  相似文献   

7.
On the Tibetan Plateau, the unique alpine climate factors of low air pressure, low CO2 partial pressure and low air temperature have significant but non-explicit influences on the photosynthetic capacity of plants. To evaluate these influences, we measured the net photosynthetic rates for spring hulless barley leaves at two altitudes of 3688 m (the low altitude) and 4333 m (the high altitude), respectively. Two photosynthetic parameters—Vcmax, the maximum rate of Rubisco carboxylase activity, and Jmax, the maximum rate of photosynthetic electron transport—were determined. The net photosynthetic rate and the photosynthetic parameters Vcmax and Jmax were higher for leaves from plants grown at the high altitude than for those at the low altitude. Vcmax and Jmax were approximately 24% and 22% greater, respectively, for leaves from plants grown at the high altitude. The CO2 and air temperature at the high altitude were lower than those at the low altitude. As a consequence, plants exposed to lower CO2 partial pressure and lower air temperature have a higher photosynthetic capacity on the Tibetan Plateau. The optimal temperatures for Vcmax and Jmax were approximately 6.5% and 3.5% higher, respectively, in leaves from plants grown at the high altitude than those grown at the low altitude, and the ratio of Jmax to Vcmax was 12.7% lower at the low altitude. Simulation analyses revealed that the photosynthetic capacities of plants decreased after long-term increases in CO2 partial pressure and temperature associated with global climate change on the Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号