首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
基于CFD的泵装置性能预测方法比较   总被引:2,自引:0,他引:2  
以某混流泵装置为例,采用CFD技术分别进行包括进出水流道和水泵在内的水泵装置全流道数值模拟的性能预测和由不带泵进出水流道数值模拟得到的流道效率与泵效率乘积的泵装置性能预测,并与模型装置试验结果进行比较。结果表明,根据水泵装置全流道数值模拟方法进行的装置性能与模型试验结果误差较小;以流道效率与泵效率乘积的方法预测装置效率的误差较大,仅在最优工况点附近与模型试验泵装置效率近似相等,引起较大误差的主要原因是基本理论存在不合理性。因此,建议以进水流道、出水流道和水泵作为整体进行内流数值模拟和装置性能预测,并在考虑泵对流道影响的情况下进行流道的水力设计优化。  相似文献   

2.
采用Realizable k-ε模型,对某轴流泵装置进行了全流道数值模拟.基于Navier-Stokes方程特点和泵QH曲线提出了一种在缺乏水泵叶轮数据的情况下对泵站全流道进行数值模拟的新的方法,即虚拟泵模型.针对虚拟泵模型和真实泵模型,比较了泵站装置特性曲线以及进水流道压强分布、流速分布.分析结果表明:虚拟泵模型模拟的装置特性曲线和真实泵模型非常接近;进水流道的压强分布与真实泵模型相似,数值略小于真实泵模型;进水流道的流速分布与真实泵模型非常接近,但真实泵模型的流速分布更加均匀.  相似文献   

3.
基于RNG k-ε紊流模型和雷诺时均N-S方程,运用流体计算CFD软件对钟型进水流道的轴流泵装置进行三维流动数值模拟以及水力性能的优化设计。通过先局部后整体的方法先单独对钟型进水流道进行优化,然后在整体泵装置内对弯管式出水流道进行优化,对进、出水流道进行三维参数化建模,进水流道以出口断面速度均匀度和水力损失为目标函数,出水流道以泵装置效率为目标函数,针对设计流量工况点,分别对进水流道和出水流道各控制参数方案进行数值模拟计算,分析不同控制尺寸对进、出水流道水力性能的影响。最后通过模型试验对优化方案数值计算结果进行可靠性验证。数值模拟和模型试验结果表明,优化后钟型进水流道的水力损失由0.348 m降低到0.148 m,钟型进水流道出口流速均匀度由54.59%提高到93.35%;弯管式出水流道的水力损失由0.464 m降低到0.415 m,通过优化流态得到了改善。模型泵装置试验在叶片安放角0°时,设计工况下泵装置效率达到74%,泵装置最高效率为76.47%,高效区运行范围较宽;进出水流道无漩涡产生,流态均匀,数值模拟和模型试验外特性曲线误差在5%以内,进水流道水力损失曲线趋势相同。运用数值模拟优化计算钟型进水流道的轴流泵装置,缩短了试验周期,节约了成本,可为同类泵站的设计和安全运行提供参考。  相似文献   

4.
灌排泵站进出水流道的水力性能影响水泵工作状态。对目前进出水流道的优化设计、流动测试、外特性试验和数值模拟研究等方面的研究进展进行了全面的综述,指出国内研究方面存在的主要问题,并提出了开展泵装置整体定常和非定常数值模拟正逐步成为进出水流道优化设计和研制新的泵装置形式的主要方向。  相似文献   

5.
大型水泵装置全流道数值模拟与性能预测   总被引:3,自引:1,他引:3  
采用计算流体动力学方法,对某大型混流泵装置进行了全流道数值模拟,对有泵与无泵进、出水流道的内部流动及水力损失进行了对比分析,实现了水泵装置性能预测.研究发现,水泵叶轮旋转和导叶出口剩余环量与进、出水流道的内部流场相互作用,进水流道的出口水流条件和出水流道的进口水流条件与单独计算时的假定有本质不同,对进、出水流道的水力损失和装置性能有显著的影响.在水泵装置中,进水流道的水力损失小于无水泵时的流道水力损失,在一定流量范围内,仍基本符合二次抛物线规律.与此相反,出水流道的水力损失远大于无水泵时的水力损失,在设计流量附近出现局部极小值,不再完全符合二次抛物线规律.数值计算结果得到了模型试验的验证.  相似文献   

6.
大型泵站出水流道三维流动及水力损失数值计算   总被引:7,自引:2,他引:7  
根据研究低扬程泵站水泵装置的方法可以多样化的观念,提出了将出水流道从水泵装置中分离出来,进行出水流道内部流态数值模拟和水力损失计算的方法.介绍了低扬程大型泵站出水流道三维流场及水力损失数值计算的计算区域、边界条件及网格剖分等有关问题;给出了虹吸式和直管式等两种形式出水流道三维流场和水力损失数值计算的实例,并与流道模型试验的流场观察及水力损失测试结果进行了比较.结果表明:两种形式出水流道内部三维流动以及水力损失数值计算的结果,与流道模型试验的结果一致.  相似文献   

7.
为确保仙桃大垸子泵站的安全、平稳、高效运行,运用三维湍流数值模拟对该大型泵站设计工况的进出水流道内部流动进行了水力优化。基于流道三维流场数值计算结果,采用轴向流速分布均匀度、入泵水流加权平均角和阻力系数3个指标综合评价进水流态,采用出口平均流速分布和流道损失综合评价出水流态,揭示了肘形进水流道弯曲段内曲率半径对进水流道水力性能的影响规律,以及屈膝式出水流道出口段外曲率半径对出水流道水力性能的影响规律。结果表明:过大或过小的曲率半径和不平顺的流道线型都不利于优化进出水流道水力性能,出水流道过度段不可避免会出现分离旋涡,屈膝段曲率半径变化越连续,线型越平顺,流道水力性能就越好;线型优化应综合考虑数模计算成果和工程实施等因素。  相似文献   

8.
水泵转速变化对进出水流道水力损失的影响   总被引:1,自引:1,他引:1  
在比较各种进出水流道水力损失研究方法的基础上,运用计算流体动力学方法数值模拟了4种水泵装置内部流动,研究水泵转速变化对进出水流道水力损失的影响.数值计算结果表明,由于水泵装置中进水流道内部流动受水泵叶轮旋转引起的水流预旋的影响,因而小于无泵单独运行时的水力损失.水泵转速变化后,在相同流量下,进水流道的水力损失基本不变.水泵导叶出口水流条件和剩余环量影响出水流道的水力特性,水力损失随流量变化的关系非常复杂.水泵转速变化后,出水流道内部流动不相似,相同流量下的水力损失不相等.装置模型试验结果验证了数值计算结果的有效性和可靠性.  相似文献   

9.
在比较各种进出水流道水力损失研究方法的基础上,运用计算流体动力学方法数值模拟了4种水泵装置内部流动,研究水泵转速变化对进出水流道水力损失的影响。数值计算结果表明,由于水泵装置中进水流道内部流动受水泵叶轮旋转引起的水流预旋的影响,因而小于无泵单独运行时的水力损失。水泵转速变化后,在相同流量下,进水流道的水力损失基本不变。水泵导叶出口水流条件和剩余环量影响出水流道的水力特性,水力损失随流量变化的关系非常复杂。水泵转速变化后,出水流道内部流动不相似,相同流量下的水力损失不相等。装置模型试验结果验证了数值计算结果的有效性和可靠性。  相似文献   

10.
潜水轴流泵通常用于单向和卧式泵装置,用于双向立式泵装置不多。针对泵站改造要求,通过CFX软件对双向流道潜水轴流泵装置内的流动进行数值模拟,分析了进出水流道过流特性及流态,预测了装置性能,以此改进了泵装置的进出水结构。在高精度试验台对模型泵装置进行了测试,获得了泵装置综合特性曲线,泵装置最高效率达到67.3%,平均提高3%~5%。进水流态试验观测发现进水流道内的涡带,研发的消涡锥成功消除了附底漩涡,提高了机组运行的安全性。泵装置性能预测结果在高效区与模型试验结果基本一致。  相似文献   

11.
大型箱涵式泵装置优化设计与试验   总被引:1,自引:0,他引:1  
为了研究箱涵式泵装置进、出水流道的水力性能,采用了基于CFD数值模拟计算和模型试验的DOE正交设计试验方法。对进、出水流道进行三维参数化建模,以进水流道出口断面速度均匀度和水力损失为目标函数,针对进水喇叭管、导水锥和出水喇叭管、出水导流墩控制尺寸进行五因素四水平的正交试验设计。通过CFD数值模拟手段,针对设计流量工况点,分别对进水流道和出水流道各16个设计方案进行数值模拟计算,分析不同控制尺寸对进、出水流道水力性能的影响。最后通过模型试验对优化方案数值计算结果进行可靠性验证。数值模拟和试验结果表明,通过DOE正交设计方法进行进水流道优化设计,可以得到各控制参数对进水流道水力损失和出口断面均匀度的主次影响,进水流道最大水力损失达到8.56 cm,最小水力损失为3.91 cm,优化方案水力损失为3.65 cm,出口速度均匀度达到93.07%,较初始方案水力损失降低了1.31 cm,出口速度均匀度提高了1.17个百分点;出水流道最大水力损失为46.07 cm,最优组合出水流道水力损失为32.53 cm,较原始方案水力损失减小了7.96 cm。根据泵装置全特性曲线可知,该泵装置出水流道水力损失在设计工况下最小,最高运行效率达到70.04%,最高运行扬程为4.0 m,在设计扬程1.36 m时,效率为66.82%,对应流量为34.31 m3/s。模型试验最高运行效率达到71.5%,在设计扬程1.36 m时,试验运行效率在64%左右,与数值模拟结果吻合较好。  相似文献   

12.
为研究竖井贯流泵中竖井部分对贯流泵装置的水力性能的影响,采用计算流体动力学方法对包含进出水延长段、进出水流道、叶轮和导叶在内的整体泵装置进行数值模拟,分析竖井长度、竖井头部型线以及竖井尾部型线对进水流道水力损失、出口断面轴向速度分布均匀度、出口断面速度加权平均角以及泵装置能量特性的影响.结果表明:竖井长度、竖井头部和尾...  相似文献   

13.
采用数值计算方法对卧式前轴伸泵装置的三维流场及水力性能进行了初步研究,获得了设计流量时进、出水流道的流场图以及水力损失值.同时,还采用透明流道模型试验的方法,分别对卧式前轴伸泵装置进、出水流道数值计算的结果进行了试验验证.研究结果表明:卧式前轴伸泵装置进、出水流道内的流态,数值计算的结果与试验结果一致,进水流道内的水流仅在泵轴后有很小范围的局部旋涡,进水流道出口断面的流速均匀度为96.9%;出水流道进口的水流具有一定环量,水流呈螺旋状流入流道,流道外侧的流速较大,流道中心附近流速较小.进、出水流道水力损失值,数值计算值分别为0.142 m和0.163 m,流道模型试验值为0.137 m和0.168 m,两者非常接近.该泵装置在低扬程泵站具有一定的应用前景.  相似文献   

14.
为探究某泵站轴流泵装置反向发电的水力特性,对该轴流泵装置反向发电工况进行全流道数值模拟分析.结果表明:轴流泵装置在额定转速进行反向发电时,其最优工况相比于水泵模式,水头和流量分别提高43%和38%;随着转速增大,效率-流量曲线呈现向大流量方向偏移趋势,高效区范围逐渐增大;导叶进口、转轮进出口压力脉动呈周期性,转轮进出口压力脉动受转轮旋转影响更为显著;压力脉动系数幅值沿径向由轮毂至轮缘逐渐增大,转轮出口的压力脉动幅值最大,约为转轮进口的2倍;在频域方面,压力脉动主频为叶频,次频为2倍叶频,在转轮进出口主频所对应的压力脉动系数幅值沿径向由轮毂至轮缘逐渐增大;在小流量工况,随着轴流泵反向发电运行时的流量越小,出水流道流线越混乱且涡带越明显.研究结果可为泵站轴流泵装置反向发电提供一定的理论支撑和工程运行参考.  相似文献   

15.
基于FLUENT的无过载离心泵改型及性能预测   总被引:1,自引:0,他引:1  
王洋  何文俊 《排灌机械》2009,27(2):115-118
探讨了降低离心泵轴功率,避免配套电机过载的方法和措施;提出了采用堵塞部分流道的方法,来降低离心泵的轴功率.在利用商业软件FLUENT对离心泵进行性能预测的基础上,对IS50-32-160型离心泵的叶轮流道进行了两次堵塞尝试.第2次流道堵塞尝试,在堵塞了1/4左右的平面流道,两叶片间流道有效部分的出口和进口面积比改为1.16后,最大轴功率较堵塞流道前降低了10.4%,并呈现出无过载特性.两次堵塞对比的结果表明,采用正确的堵塞流道方法可以降低离心泵的轴功率,提高离心泵的效率;正确的堵塞流道方法应该考虑流道堵塞率以及两叶片间流道有效部分的出口和进口面积比.  相似文献   

16.
讨论了斜式进水流道流场可视化与模拟的过程及实现环境,基于CFD计算结果的网格图形显示方式,分析了斜式进水流道多断面流场可视化的表达及色彩处理问题.在AutoCAD环境下,利用ObjectARX开发平台较好地实现了斜式进水流道多断面流场的三维显示、基于流线表达方式的流场整体可视化及基于计算机图形学中经典算法的实时流场的模拟.采用OpenGL色彩处理功能展示了多断面流场的特性.结果表明,流场可视化可直观形象地展示斜式进水流道内流场的分布,检验其数值模拟计算的流场特性,便于工程技术人员对数值模拟计算结果的理解,为进一步优化计算流场提供依据.  相似文献   

17.
为研究轴伸贯流泵压力脉动特性及其改善方法,应用计算流体动力学数值方法,采用在出水流道内增设导流板的方式进行贯流泵优化设计,并结合真机试验验证了数值计算方法的正确性.研究结果表明:在小流量工况下,原模型与优化模型泵的压力脉动时域特性和频域特性较额定工况下要差,但不同流量工况下叶轮进口处压力脉动特性均受到旋转叶轮显著影响;小流量工况下压力脉动变化强烈,原模型在叶轮出口及后导出口处的压力脉动低频成分明显,增设导流板可有效降低这2处的压力脉动变化幅值及其低频成分;在额定工况下,贯流泵压力脉动周期性规律显著,导流板则能有效降低前导进口及叶轮进口处的压力脉动变化幅值及其低频成分;在不同流量工况下,出水流道内导流板消涡效果均十分显著.  相似文献   

18.
前、后置竖井贯流泵装置基本流态分析   总被引:1,自引:0,他引:1  
利用数值模拟软件Fluent 6.2对雷诺时均N-S方程进行离散,采用S-A单方程模型和SIMPLEC算法对前置竖井和后置竖井贯流泵装置在50%~120%设计额定流量等共16种工况进行了数值计算,并与换算成原型尺寸后的模型试验结果进行了对比,发现性能变化趋势吻合较好,在相同流量下数值计算值与试验值效率误差均在±5%以内。分别对前、后置竖井贯流泵装置的进水流道、泵室段和出水流道在设计流量工况下的基本流态进行了分析和对比,探讨了水力损失的原因。结果表明,前置竖井贯流泵装置的进、出水流态都比较好,而后置竖井贯流泵装置的进水流态均匀平顺,但出水流道的流态比较混乱,水力损失相对较大,装置效率低于前置竖井贯流泵装置;导叶和竖井是影响出水流道流态和装置效率的关键因素,在导叶环量和竖井的影响下极易产生脱流和漩涡。  相似文献   

19.
为了研究多级离心泵内级间相互影响及流道内的瞬时流动特征,对一两级泵内部流动进行了三维定常与非定常数值计算,获得并分析了不同流量工况条件下流道内各个监测点的压力脉动特征.研究表明:首级导叶的存在是导致次级叶轮入口截面上不均匀流动状态的关键因素;在每级叶轮的出口与导叶进口联结处均存在剧烈的动静耦合作用;尽管整体流道的几何形状复杂,叶片通过频率仍支配着该两级泵内全流道的特征压力脉动,而导叶叶片数对压力脉动特征的影响较弱;叶轮内与叶频对应的压力脉动幅值自叶轮进口到叶轮出口逐渐增大,且在叶轮出口处达到极大值,导叶中的相应变化规律则与之相反;偏离最优流量工况,叶频仍占据统治地位,但整个流道内的压力脉动幅值增大,该趋势在小流量工况下尤为明显.  相似文献   

20.
为了研究高转速工况下车用凸轮式氢气循环泵内部流场分布规律和压力脉动特性,以某一种车用凸轮式氢气循环泵为研究对象,建立三维瞬态计算流体力学模型,基于ANSYS Fluent软件的动网格技术,采用Realizable k-ε湍流模型和PISO压力-速度耦合算法,对氢气循环泵全流道进行非定常可压缩数值模拟.通过在氢气循环泵旋转流道周向设置压力脉动监测点,应用快速傅里叶变换(FFT)技术获得各监测点的压力脉动频域图,得到流道内压力脉动频率分布规律.将数值模拟结果和理论分析结果进行对比,验证了基于动网格技术的数值模拟方法能较准确地预测车用凸轮式氢气循环泵内流脉动特性.研究结果表明:数值模拟得到的排气流量平均值和理论分析结果误差为4.7%,可以较准确地反映泵内部气体流量脉动规律;通过分析排气流道内涡量场分布,发现排气流道内出口回流和负的z向涡量正相关,随着出流气体占据排气流道,负的z向涡量消失;氢气循环泵旋转流道周向压力脉动主频为267 Hz,与转子旋转基频一致.研究结果为进一步分析凸轮式氢气循环泵内流脉动特性提供了一定依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号