首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
班菲尔脐橙可溶性固形物近红外光谱特征谱区选择   总被引:2,自引:0,他引:2  
为探讨快速无损检测班菲尔脐橙可溶性固形物(TSS)含量的方法,利用多元散射校正对脐橙1 000 ~2 500 nm近红外光谱进行了预处理,并用偏最小二乘法(PLS)、区间偏最小二乘法(iPLS)和联合区间偏最小二乘法(siPLS)分别建立预测模型.结果表明,采用siPLS将光谱划分为17个子区间,利用其中的第4(1 267~1355 nm)、5(1 356 ~1 443 nm)、9(1708~1795nm)、15(2 236 ~2 323 nm)号4个子区间联合建立的TSS模型效果最佳,其校正集决定系数和均方根误差分别为0.9109和0.331 2.预测集决定系数和均方根误差分别为0.878 9和0.448 7,主因子数为6个.研究表明,近红外光谱技术结合siPLS可优选出表征班菲尔脐橙TSS含量信息的特征光谱区间简化预测模型,同时提高模型预测能力和精度.  相似文献   

2.
利用可见―近红外光谱术无损检测牛奶中的三聚氰胺   总被引:2,自引:0,他引:2  
初步探讨了利用可见―近红外光谱术检测牛奶中三聚氰胺的可行性及方法。通过往牛奶中掺入不同浓度三聚氰胺的方法,制备了165个样品,三聚氰胺浓度为0~1000ppm。利用光纤光谱仪采集样本的可见―近红外光谱,其光谱范围为350~1800nm。然后分别采用最小二乘法(PLS)、区间偏最小二乘法(IPLS)及联合区间偏最小二乘法(SIPLS)建立预测模型。比较实验结果表明:把光谱分为10个子区间,通过SIPLS方法,选出3个光谱子区间(4、7、9)联合建立的预测模型最优,其校正集和预测集得相关系数分别为0.9981和0.9946,校正集和预测集的均方根误差分别为0.1942和0.3299。因此,可见近红外光谱术结合联合区间偏最小二乘法能无损、快速的检测牛奶中的三聚氰胺。  相似文献   

3.
特征变量筛选在近红外光谱测定绿茶汤中茶多酚的应用   总被引:2,自引:1,他引:1  
利用化学计量学方法从绿茶汤近红外光谱中提取茶多酚光谱信息,建立茶多酚近红外光谱定量分析模型.光谱采集使用5 mm光程的石英比色皿,利用联合区间偏最小二乘法(siPLS)筛选特征光谱区间,然后在筛选的光谱区间内进一步利用遗传算法(GA)优选特征变量.结果表明,siPLS筛选的特征光谱区间避开了水的强吸收峰影响,利用GA在筛选的特征光谱区间内优选出166个特征变量建立PLS模型,模型预测集均方根误差为0.685%,相对标准差为5.26%,相对分析误差为3.22,所建模型能达到精度要求,可用于实际检测.  相似文献   

4.
黄瓜叶片叶绿素含量近红外光谱无损检测   总被引:3,自引:0,他引:3  
为了简化黄瓜叶片叶绿素光谱模型和提高模型预测精度,采用联合区间偏最小二乘法( SiPLS)结合净分析物法( NAS)提取近红外光谱的特征信息,建立了黄瓜叶片叶绿素光谱模型.收集了110片新鲜黄瓜叶片,用近红外光谱仪采集光谱数据后立刻用化学分析方法测定叶绿素含量.原始光谱经过SNV预处理和子区间总数优化后,将全光谱均匀划分为29个子区间,用联合区间偏最小二乘法优选出4个特征子区间,在上述特征子区间的基础上,用净分析物法分离光谱中同叶绿素相关的光谱信息,并结合线性回归法建立了叶绿素光谱模型.模型对应的校正集相关系数Rc、校正均方根误差、预测集相关系数Rp和预测均方根误差分别为0.947 2、0.079 5 mg/g、0.925 0和0.090 6 mg/g.结果表明:联合区间偏最小二乘法结合净分析物法能够有效提取叶绿素的特征光谱信息,提高模型精度的同时降低其复杂度.  相似文献   

5.
马铃薯干物质含量高光谱检测中变量选择方法比较   总被引:5,自引:1,他引:5  
为提高利用高光谱成像技术快速检测马铃薯干物质含量的精度,比较了主成分分析法(PCA)、组合间隔偏最小二乘法(siPLS)、遗传偏最小二乘法(GA-PLS)、无信息变量消除法(UVE)以及竞争性自适应重加权算法(CARS)等变量选择方法。在此基础上提出一种竞争性自适应重加权算法与连续投影算法(SPA)相结合的波长选择方法,最终将原始光谱变量从678个减少到了27个。用27个变量建立多元线性回归模型,模型预测集相关系数Rp为0.86,预测均方根误差为1.06%。实验结果表明:高光谱成像技术能够对马铃薯干物质含量进行检测,同时CARS-SPA是一种有效的变量选择方法。  相似文献   

6.
基于近红外光谱技术的紫薯贮藏期间花青素含量检测   总被引:1,自引:0,他引:1  
紫薯采后贮藏过程中,受环境因素影响,紫薯花青素会逐渐发生降解,导致紫薯色泽变化,营养品质下降。应用近红外光谱技术对贮藏期间的紫薯花青素含量变化进行了分析,建立了快速无损检测模型。实验采集了不同贮藏时间紫薯样本(120个)的近红外光谱,基于全波长范围4 000~10 000 cm-1结合不同光谱信号预处理方法(数据卷积平滑、一阶求导、标准正态变量变换(SNV))建立紫薯花青素的PLS(偏最小二乘)、SNV-PLS、i PLS(区间偏最小二乘)、GA-PLS(遗传算法-偏最小二乘)定量预测模型。结果显示,全波段经SNV为最优的原始光谱预处理方法。对经SNV预处理的光谱进行i PLS、GA特征波段筛选,所建立的GA-PLS模型预测效果最佳,预测集决定系数R2v和均方根误差为0. 913 6和7. 239 8 mg/(100 g),剩余预测偏差为3. 339 7。研究结果表明,应用近红外光谱技术可以较好地检测紫薯花青素含量,研究结果可为紫薯加工原料智能筛选以及贮藏品质监测提供一种可靠手段。  相似文献   

7.
生菜叶中磷含量的光谱定量分析   总被引:1,自引:0,他引:1  
为快速、准确检测生菜叶内的磷含量,提出了应用光谱技术结合化学计量法无损检测生菜叶内磷含量的方法。通过获取不同施磷量下生菜叶片于波长350~2500nm处的反射光谱,对光谱数据进行5点平滑和一阶导数变换后,利用联合区间偏最小二乘算法(siPLS)提取了与生菜叶磷元素相关的4个特征波段,即950~1070nm, 1430~1549nm,1906~2025nm和2144~2263nm。进一步利用连续投影算法(SPA)对全光谱波段和4个特征波段进行特征波长提取,分别筛选出变量63个和25个。分别对4个特征波段、63个和25个特征波长进行主成分降〖JP2〗维,当主成分数分别为7、5和4时,隐含层神经元数分别为7、5和3时,建立了siPLS+BPANN,SPA+BPANN,siPLS+〖JP〗SPA+BPANN生菜叶磷含量检测模型。研究结果表明:siPLS+SPA+BPANN模型的预测结果优于其他模型,验证集相关系数为0.911,验证均方根误差为479mg/kg。  相似文献   

8.
鲜枣可溶性固形物可见/近红外光谱检测建模方法比较   总被引:3,自引:1,他引:3  
对采摘于一枣园的180个壶瓶枣样本,随机分成150个样本校正集和30个样本预测集。用FieldSpec3光谱仪采集光谱,并进行多元散射校正(MSC)预处理,之后分别利用连续投影算法(SPA)和逐步回归法(SRA)提取特征波长,并结合光谱理论分析确定,再分别基于偏最小二乘法(PLS)和最小二乘-支持向量机(LS-SVM)建立壶瓶枣可溶性固形物含量预测的简化模型和全波段模型。结果表明,全波段PLS模型预测的相关系数和预测均方根误差分别为0.887 4和1.088 9,预测效果最好;建立的MSC-SPA-PLS模型预测的相关系数和均方根误差分别为0.799 0和1.407 8,建立的MSC-SRA-PLS模型预测的相关系数和均方根误差分别为0.822 4和1.3851,与全波段的MSC-PLS相比,精度均降低;建立的MSC-SPA-LS-SVM模型预测的相关系数和均方根误差分别为0.796 3和1.145 8,与全波段的MSC-LS-SVM相比,精度提高;建立的MSC-SRA-LS-SVM模型预测精度很低,不适用。  相似文献   

9.
苹果可溶性固形物近红外在线光谱变量优选   总被引:2,自引:0,他引:2  
为简化近红外光谱模型,提高对苹果可溶性固形物含量的预测精度,将移动窗口偏最小二乘法(MWPLS)与遗传算法、连续投影算法相结合优选特征变量,建立偏最小二乘回归校正模型。其中移动窗口偏最小二乘法和遗传算法相结合优选的36个光谱变量建立的校正模型预测结果最好,可以有效筛选近红外光谱特征波长,模型预测相关系数为0.90,模型的预测均方根误差为0.70°Brix。  相似文献   

10.
实验选择最优的光谱预处理方法和光谱范围,运用近红外光谱分析中的聚类分析法和偏最小二乘法(PLS)分别进行了定性和定量分析研究。结果表明,采用聚类分析法可准确地将样品分为两类,同时采用预测集的样品验证所建模型的准确性,预测准确率达90%以上。采用偏最小二乘法(PLS)所建的定量分析模型的相关性较高,预测相关系数和预测均方根误差均符合要求。  相似文献   

11.
基于GSA的厌氧发酵原料碳氮比NIRS快速检测   总被引:1,自引:0,他引:1  
在以预处理后玉米秸秆、秸秆粪便混合物为原料进行厌氧发酵生产沼气时,为了对厌氧发酵原料碳氮比进行快速检测,将近红外光谱(NIRS)与偏最小二乘(PLS)回归相结合构建快速检测模型,并基于遗传模拟退火算法(GSA)构建遗传模拟退火区间偏最小二乘算法(GSA-iPLS)和双重遗传模拟退火偏最小二乘算法(DGSA-PLS)分别用于特征谱区优选和特征波长点优选,以提高回归模型的检测精度和效率。全谱1844个波长点经GSA-iPLS进行谱区优选后,得到641个波长变量,再经DGSA-PLS进行特征波长点优选后,得到628个波长变量。DGSA-PLS回归模型验证集的决定系数(R2p)为0.920,预测均方根误差为7.178,相对分析误差为3.805。与全谱建模相比,DGSA-PLS模型的RMSEP减小了15.87%。通过波长优选,参与建模的波长点数量显著减少,有效降低了变量维度和模型复杂度,提升了预测精度和预测能力。本文通过优选碳氮比的敏感波长变量,有效提高了预测模型的鲁棒性,为直接、快速、准确测量厌氧发酵原料的碳氮比提供了新途径。  相似文献   

12.
基于近红外高光谱图像的黄瓜叶片色素含量快速检测   总被引:5,自引:0,他引:5  
利用高光谱图像技术和高效液相色谱法(HPLC)快速检测了新鲜黄瓜叶中叶绿素a、叶绿素b、β-胡萝卜素和叶黄素4种色素含量。采集了120片黄瓜叶的近红外高光谱图像数据以及用HPLC精确测定黄瓜叶中色素含量;提取高光谱图像中50×50像素感兴趣区域(ROI)的平均光谱与4种色素含量分别建立偏最小二乘(PLS)预测模型;为了提高模型的稳定性和预测精度,分别采用区间偏最小二乘(iPLS)、向后区间偏最小二乘(BiPLS)和联合区间偏最小二乘(SiPLS)对各种色素对应的特征波段进行优选,同时对光谱划分数进行了优化。结果表明BiPLS和SiPLS对应模型的预测效果较好,对叶绿素a、叶绿素b、β-胡萝卜素和叶黄素4种色素的预测集相关系数RP分别为0.825 7、0.813 4、0.811 6、0.826 2。  相似文献   

13.
高光谱成像技术的玉米叶片氮含量检测模型   总被引:2,自引:0,他引:2  
应用高光谱成像技术,实现了玉米拔节期叶片氮含量的检测。提取出240个叶片样本的平均光谱反射率数据(400~1 000nm),对原始数据分别进行3种预处理(1stDer、2ndDer、SNV),建立了4种预测模型,包括基于幅值参数(Dλr、Dλy、Dλb)的多种回归模型、全光谱PLS模型、基于连续投影算法(SPA)的PLS模型及基于主成分分析法(PCA)的PLS模型。建模结果显示:基于PCA的PLS模型预测精度最低;全光谱的PLS模型Rc2和RP2分别为0.967、0.821;基于SPA算法的PLS模型R_c~2、R_P~2分别为0.944、0.749,与全光谱的PLS模型预测精度相当,而自变量个数减少了95.07%。基于幅值参数的多元回归模型其预测结果虽与基于全光谱的PLS模型有些许差距,但模型简单,运算量最小,适用于对精度要求不高的场合。  相似文献   

14.
香根草叶片铅含量的近红外光谱快速检测   总被引:1,自引:0,他引:1  
提出了一种应用近红外光谱技术快速检测香根草叶内重金属铅含量的方法,采用多种预处理方法建立偏最小二乘法(PLS)模型并对建模效果对比分析,得出最优预处理方法。结合不同波段选择方法优化PLS模型参数,建立了香根草叶内重金属铅含量定量分析模型,预测决定系数R2为0.87,预测均方根误差RMSEP为0.18。研究结果表明,利用近红外光谱技术快速定量检测香根草叶内重金属铅含量具有可行性。  相似文献   

15.
基于小波变换的大米直链淀粉波长选择方法   总被引:1,自引:1,他引:0  
提出了一种基于小波变换的近红外光谱波长选择方法,小波分解低频系数是原光谱的离散近似,将最佳小波分解低频系数与原光谱数据进行关联,求出小波分解低频系数与原光谱数据的列相关系数R,取与原光谱数据相关系数较大的波长组合,作为最后参与建模的谱区.不仅考虑了浓度矩阵对波长选择的影响,且由于把小波分解结构中的高频系数全部滤除,避免了高频噪声的干扰,减小建模和预测运算时间,使最终建立的近红外光谱模型的预测精度提高.在大米直链淀粉含量的近红外光谱分析中进行了验证,并与其他常用波长选择方法进行了比较,结果表明,该方法波长点数最少,减小为原光谱数据点数的20%,校正模型和预测效果都较理想.  相似文献   

16.
对晚疫病害胁迫下马铃薯叶片中叶绿素含量(SPAD)及植被指数与高光谱特性进行了关联研究。首先,对接种晚疫病菌的马铃薯叶片进行连续观测7天,获取375~1 018nm波段范围内叶片的高光谱信息和SPAD信息;然后,应用ENVI软件提取高光谱数据中感兴趣区域的平均光谱信息,选择预处理效果最好的方法建立不同的预测模型,包括基于全光谱和连续投影算法(Successive Projection Algorithm,SPA)选择特征波长的偏最小二乘回归(Partial Least Squares Regression,PLSR)模型与最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)模型,以及4种植被指数RENDVI、VOG1、VOG2、VOG3建立的简单经验估测模型。建模结果表示:全光谱的PLSR模型预测效果最好,而基于特征波长的LS-SVM模型和植被指数的二次多项式模型预测效果稍差,但大大简化了模型,为后续开发便携式仪器提供理论依据。研究表明:应用高光谱技术检测遭受晚疫病害的马铃薯叶片的SPAD及植被指数是可行的,为病害胁迫下作物的其他化学指标实时监测提供了新的路径。  相似文献   

17.
基于高光谱技术的采摘期烟叶水分含量研究   总被引:1,自引:0,他引:1  
烟叶含水量的快速检测在烟草种植业中起着关键的作用,检测采摘期烟叶水分含量,对烟草工艺具有重要意义。为了快速、无损地检测采摘期烟叶水分含量,提出一种主成分分析(PCA)结合马氏距离算法(MD)的方法来剔除异常样本,再使用偏最小二乘法(PLS)估测采摘期烟叶水分含量。首先,利用GaiaSky-mini2机载高光谱成像仪获取到141个采摘期烟叶的高光谱数据,采用多元散射校正(MSC)、标准正态变量交换(SNV)和Savitzky-Golay卷积平滑法等对原始光谱进行预处理。然后,应用主成分分析结合马氏距离法对校正集中的异常样品进行剔除。最后,使用偏最小二乘法(PLS)建立采摘期烟叶水分含量分析模型。结果表明:利用SG卷积平滑法预处理的PCA-MD-PLS模型效果最佳,对烟叶含水量预测能力最好,预测模型相关系数为0.852 7,均方差为1.376 6。  相似文献   

18.
黄华  朱洁  刘广昊  吴习宇  祝诗平 《农业机械学报》2018,49(10):270-274,283
在近红外光谱的谱区选择算法中,滑动窗口偏最小二乘法具有较高的预测精度,但是其程序运行时间很长。在不改变算法预测精度的前提下,首先以分段间隔偏最小二乘法为基础研究了顺序分配法、等间距法和排序法等3种任务调度策略对并行算法性能的影响。在这3种任务调度策略中,排序法具有较好的负载均衡性和较高的并行效率。然后在16核云计算平台下将排序法分配策略分别应用于组合分段偏最小二乘法、反向分段偏最小二乘法和滑动窗口偏最小二乘法等谱区的并行选择算法中。经实验测试,在单核串行算法下反向分段偏最小二乘法和滑动窗口偏最小二乘法的程序运行时间分别为9.22 h和55.51 h,在排序法分配策略下采用2核并行算法时其程序运行时间分别缩短为4.98 h和29.03 h,分别节省了45.99%和47.70%的程序运行时间。实验结果表明:当考虑并行效率和计算成本时,在1~16核的并行算法中,选用2核并行执行以上4种谱区选择算法都具有最高的并行效率和性价比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号