共查询到17条相似文献,搜索用时 46 毫秒
1.
在使用近红外光谱技术进行食用油酸值与过氧化值检测时,仪器制造与检测环境的差异导致不同仪器建立的校正模型无法共享。为解决食用油酸值与过氧化值模型转移问题,使用125个食用油样本于主机建立偏最小二乘校正模型,采用光谱空间转换法进行模型转移,并与斜率/截距算法、直接标准化算法、分段直接标准化算法、极限学习机自编码器算法进行对比。结果表明,采用光谱空间转换法进行模型转移后,验证集酸值与过氧化值的预测均方根误差分别从0.583 6 mg/g和15.801 0 mmol/kg降低到了0.167 0 mg/g与9.989 3 mmol/kg,说明光谱空间转换法可以有效应用于食用油酸值与过氧化值间的模型转移,使不同仪器之间实现模型共享,这对于近红外光谱应用于食用油品质快速检测具有实际意义。 相似文献
2.
3.
4.
基于CARS-PLS的食用油脂肪酸近红外定量分析模型优化 总被引:6,自引:1,他引:6
采用CARS波长变量挑选方法优化建模,对食用油中4种主要脂肪酸(棕榈酸、硬脂酸、油酸和亚油酸)进行近红外定量分析。应用预测浓度残差法剔除奇异样本后,对样品集光谱进行标准化预处理,通过CARS优选出的波长变量分别建立4种脂肪酸的偏最小二乘法(PLS)模型。与采用OPUS软件自动优化建模相比,CARS法所建模型的决定系数(R2)、交叉校验均方根误差(RMSECV)和预测均方根误差(RMSEP)都优于后者所建模型。CARS法有效地简化了模型,且所挑选出的特征波长较少。 相似文献
5.
6.
7.
基于近红外光谱技术的农作物病害诊断 总被引:2,自引:0,他引:2
利用近红外光谱诊断农作物病害是近几年兴起的一种具有高效、准确和非破坏性的技术。为此,阐述了近红外光谱诊断农作物病害的原理;介绍了处理近红外光谱数据的关键技术以及建立光谱模式识别模型的方法;报告了近红外光谱技术在农作物病害诊断中的应用现状;提出了运用近红外光谱技术诊断农作物病害存在的难点;最后,指出了一些研究中有待解决的问题。 相似文献
8.
基于近红外光谱的猪肉水分在线检测与分级 总被引:2,自引:0,他引:2
基于近红外光谱法,优化光纤探头检测距离并通过检测距离调节系统和多点同时检测,设计了猪肉水分在线检测分级系统。首先,为确定光纤探头与生鲜猪肉样品表面间的最佳检测距离,在13个不同检测距离下(5~29 mm)采集了54个样品的光谱,采用多元散射校正方法对原始光谱进行预处理,分别建立了第1波段(349~1 435 nm)、第2波段(1 037~1 761 nm)和双波段结合3种情况的含水率偏最小二乘回归模型,分析了不同检测距离和不同波段的模型,确认19 mm为在线检测分级装备的最佳检测距离。然后,通过检测距离实时调节系统动态固定最佳检测距离,设计了双波段多点同时检测系统,采集45个猪肉样品在静态条件和在线条件下的光谱,通过比较分析,两种情况下预测结果相近,从而证实了所设计的在线系统能够预测猪肉水分,并且双波段融合建模效果优于单波段,预测结果为:校正集相关系数和校正均方根误差分别为0.906和0.598,验证集相关系数和预测均方根误差分别为0.836和0.402。最后,利用独立的21个猪肉样品验证猪肉预测分级模型精度及稳定性,结果判断正确率为90.48%,表明可见近红外光谱法结合多点检测能有效地在线检测猪肉水分并分级。 相似文献
9.
选择11个品牌的10多种配方奶粉,共80个样品,使用PDA型近红外光谱仪采集奶粉漫反射光谱,波长范围1 089~2 219 nm.对光谱进行了SNV、软阈小波消噪及一阶微分预处理,通过比较主成分在不同波长上的权重分布,选择不同波段建立校正模型和进行预测精度分析.结果表明,奶粉的蛋白质和脂肪的近红外光谱信息主要分布于1 100~1 400 nm和1 800~2 200 nm波段内,采用小波消除原始光谱的噪声能提高校正模型的稳定性和预测精度,可以利用PDA型近红外光谱快速检测多品牌、多类型配方奶粉中蛋白、脂肪含量. 相似文献
10.
11.
12.
基于傅里叶红外光谱重组技术的食用油检测改进研究 总被引:1,自引:1,他引:0
以食用油、无色矿物精油(OMS)、六羰基铬为试验材料,利用二维相关振动光谱技术对FTIR光谱重组(SR)检测中OMS特征吸收峰取代光谱标记物进行评价研究。结果表明在单一菜籽油体系中,有9个相关吸收峰可用于TVF预测定量分析。考虑不同因素影响,相关吸收峰减至4个。最优相关吸收峰测定OMS体积分数相关性好于标记物特征吸收峰,受混合样品极性变化影响较少。在食用油和OMS混合物中既可用光谱标记物也可用OMS溶剂本身相关吸收峰来扣除混合样品光谱中OMS部分。 相似文献
13.
应用可见/短波近红外光谱分析测量土壤碱解氮和速效钾含量.为了提高该分析方法的预测精度,消除无信息建模变量对模型稳定性的影响,原始光谱平滑后采用蒙特卡罗无信息变量消除方法(MC-UVE)对土壤碱解氮和速效钾的建模变量进行筛选,应用偏最小二乘方法(PLS)建立校正模型.对于碱解氮模型,采用MC-UVE PLS方法,建模变量减少为210,相关系数和预测均方差分别为0.84和17.1 mg/kg.对于速效钾的预测模型,采用MC-UVE方法后,建模变量减少为150,模型的预测相关系数为0.76,预测均方根误差为15.4 mg/kg. 相似文献
14.
双孢蘑菇硬度的近红外漫反射光谱无损检测 总被引:1,自引:0,他引:1
以双孢蘑菇为试验材料,基于近红外漫反射光谱定量分析技术,研究其贮藏期间硬度无损检测模型的建立方法.采用偏最小二乘法对双孢蘑菇的近红外光谱进行分析,并且比较了4种(一阶导数、二阶导数、标准正交变量变换、多元散射校正)光谱预处理方法的建模结果.试验结果表明,在选定的光谱(5000~10000cm-1)范围内,二阶导数光谱预处理方法所建模型效果最佳,其校正决定系数为0.947 1,验证决定系数为0.826 1,说明基于近红外漫反射光谱的检测方法简便易行,可用于无损评价双孢蘑菇贮藏期间硬度的变化. 相似文献
15.
16.
茶叶中低含量氨基酸近红外光谱定量分析模型研究 总被引:1,自引:0,他引:1
应用近红外光谱分析方法对茶叶中游离氨基酸进行定量分析。连续小波导数(CWD)和标准正态变量变换(SNV)用于光谱预处理;偏最小二乘回归(PLSR)方法用于校正模型构建;采用蒙特卡洛无信息变量消除(MCUVE)方法和连续投影算法(SPA)对建模变量进行优化。结果表明,CWD-SNV方法可以有效地提高茶叶光谱质量,消除光谱的平移误差;基于MCUVE-SPA的变量筛选方法极大地改善了模型的精度,实现了建模变量的有效压缩,模型的预测相关系数(Rp)和预测均方根误差(RMSEP)分别由0.851和0.117改善为0.895和0.107,建模变量由4 148减小为18;当氨基酸百分含量大于0.1%时,近红外光谱结合化学计量学方法可以得到较优的定量分析模型。为茶叶中低含量氨基酸的分析提供了一种快速简便的分析方法。 相似文献