首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of bacterial-feeding nematodes on bacterial number, activity, and community composition were studied through a microcosm experiment using sterilized soil inoculated with soil bacteria (soil suspension) and with bacteria and three species of bacterial-feeding nematodes ( Cephalobus persegnis, Protorhabditis filiformis, and Caenorhabditis elegans). Catalyzed reporter deposition-fluorescence in situ hybridization, CO2 evolution, and denaturing gradient gel electrophoresis (DGGE) of PCR ampli- fied 16S rRNA gene fragments were used to investigate bacterial numbers, antivity, and community composition, respectively. Our results showed that bacterial numbers and activity significantly increased in the presence of bacterial-feeding nematodes, which indicated that bacterial-feeding nematodes had a significant positive effect on soil bacteria. The different nematode species had different effects on bacterial numbers and activity. C. persegnis and P. filiformis, isolated from native soil, increased the bacterial number and activity more than C. elegans. The DGGE analysis results showed that dominant bacterial species significantly differed among the treatments, which suggested that bacterial-feeding nematode species modified the bacterial community composition in soil. Further gene sequence analysis results showed that the dominant bacterial species in this study were gram-negative bacteria. Given the completely same conditions except nematode species, the varied selective feeding behavior of different nematode species was the most likely reason for the altered bacterial community composition. Overall, the alteration of bacterial numbers, activity and community composition resulting from the bacterial-feeding nematodes may ult!mately affect soil ecological functioning and processes.  相似文献   

2.
Archaea are common and abundant members of biological soil crust communities across large-scale biogeographic provinces of arid North America. Regardless of microbial community development, archaeal populations averaged 2 × 107 16S rRNA gene copies per gram of soil, representing around 5% of the prokaryotic (total calculated bacterial and archaeal) numbers assessed by quantitative-PCR. In contrast, archaeal diversity, determined by denaturing gradient gel electrophoresis fingerprinting and clone libraries of 16S rRNA genes, was very restricted. Only six different phylotypes (all Crenarchaea) were detected, three of which were very dominant. Some phylotypes were widespread, while others were typical of Southern desert areas.  相似文献   

3.
SONG Ya-N  SU Jun  CHEN Rui  LIN Yan  WANG Feng? 《土壤圈》2014,24(3):349-358
Two types of cry1Ac/cpti transgenic rice(GM1 and GM2)and their parental non-cry1Ac/cpti rice(CK1 and CK2)were planted in the field at Wufeng,Fujian Province,China for four years to investigate the influence of genetically modified rice on diversity of bacterial and fungal community in the paddy soil.The community composition and abundance of bacteria or fungi in the paddy soil were assessed at different growth stages of rice by denaturing gradient gel electrophoresis and real-time polymerase chain reaction based on 16S rRNA gene or SSU rRNA gene in the 4th year after the experimental establishment.The composition of bacterial or fungal community changed during rice growth,while no significant differences were observed between the fields cultivated with GM1and CK1,or between the fields cultivated with GM2 and CK2 in either bacterial or fungal community composition.The copy numbers of bacterial 16S rRNA gene in the soils with CK1,CK2,GM1 and GM2 ranged from 5.64×1011to 6.89×1011copies g-1dry soil at rice growth stages,and those of fungal SSU rRNA gene from 5.24×108to 8.68×108copies g-1dry soil.There were no marked differences in the copies of bacterial 16S rRNA gene or fungal SSU rRNA gene between CK1 and GM1 or between CK2 and GM2at any growth stage of rice.Planting cry1Ac/cpti transgenic rice had no significant effect on composition and abundance of bacterial and fungal community in paddy soil during the rice growing season at least in the short term.  相似文献   

4.
Earthworms, because they change soil physical and chemical properties, are efficient engineers that act on soil microbial community and activity. Thus they may drive pollutant biodegradation in soil such as atrazine mineralization. We hypothesized that earthworms modify the abundance of indigenous soil bacteria and the fate and activity of atrazine-degraders in the soil they engineer by bioturbation. Two bacterial strains were used as bioaugmentation agents: Pseudomonas sp. ADP and Chelatobacter heintzii, which have acquired the capacity to metabolize atrazine by carrying plasmidic atz A, B, C, D, E, F and atzA, B, C, trzD genes, respectively. We analyzed the interactions between earthworms (Lumbricus terrestris) and the indigenous and atrazine-degrading (indigenous and inoculated) bacterial communities by quantifying the 16S rRNA and the atzA gene sequence copies numbers, respectively, in different earthworm microsites. The kinetics of atrazine mineralization were measured to link the bacterial community changes with the degradation function. Digestion by earthworms significantly impacted the number of indigenous bacteria and atrazine mineralization in bioaugmented soils. Regarding the fate of the two atrazine-degraders tested, Pseudomonas sp. strain ADP survived better within the 10 days of experiment than C. heintzii in the bulk soil but the surviving fraction of C. heintzii was still metabolically active and able to mineralize atrazine. A positive “burrow-lining” effect on the atzA sequence copies number was observed in soil whether bioaugmented with C. heintzii or not (i.e. native indigenous atzA) thereby indicating that burrow-linings form a specific ‘hot spot’ for atrazine-degraders. The present study is the first to report the role of earthworms in selecting native catabolic key-genes in soil (indigenous atzA). This catabolic gene selection through earthworm soil bioturbation could be important in sustaining the degradation (detoxification) function of soil.  相似文献   

5.
Land-use change can have significant impacts on soil conditions and microbial communities are likely to respond to these changes. However, such responses are poorly characterized as few studies have examined how specific changes in edaphic characteristics do, or do not, influence the composition of soil bacterial and fungal communities across land-use types. Soil samples were collected from four replicated (n = 3) land-use types (hardwood and pine forests, cultivated and livestock pasture lands) in the southeastern US to assess the effects of land-use change on microbial community structure and distribution. We used quantitative PCR to estimate bacterial–fungal ratios and clone libraries targeting small-subunit rRNA genes to independently characterize the bacterial and fungal communities. Although some soil properties (soil texture and nutrient status) did significantly differ across land-use types, other edaphic factors (e.g., pH) did not vary consistently with land-use. Bacterial–fungal ratios were not significantly different across the land-uses and distinct land-use types did not necessarily harbor distinct soil fungal or bacterial communities. Rather, the composition of bacterial and fungal communities was most strongly correlated with specific soil properties. Soil pH was the best predictor of bacterial community composition across this landscape while fungal community composition was most closely associated with changes in soil nutrient status. Together these results suggest that specific changes in edaphic properties, not necessarily land-use type itself, may best predict shifts in microbial community composition across a given landscape. In addition, our results demonstrate the utility of using sequence-based approaches to concurrently analyze bacterial and fungal communities as such analyses provide detailed phylogenetic information on individual communities and permit the robust assessment of the biogeographical patterns exhibited by soil microbial communities.  相似文献   

6.
Soil microbial community composition is determined by the soil type and the plant species. By sequencing the V3-V4 region of the bacterial 16S rRNA gene amplicons, the current study assessed the bacterial community assemblage in rhizosphere and bulks soils of wild (Glycine soja) and cultivated (Glycine max) soybeans grown in the suspensions of three important soil types in China, including black, red and soda-saline-alkali soils. The alpha-diversity of the bacterial community in the rhizosphere was significantly higher than that of the bulk soils suggesting that bulk soil lacks plant nurturing effect under the current study conditions. Black and red soils were enriched with nitrifying and nitrogen-fixing bacteria but the soda-saline-alkali soil suspension had more denitrifying bacteria, which may reflect agronomic unsuitability of the latter. We also observed a high abundance of Bradyrhizobium and Pseudomonas, enriched cellulolytic bacteria, as well as a highly connected molecular ecological network in the G. soja rhizosphere soil. Taken all, the current study suggest that wild soybeans may have evolved to recruit beneficial microbes in its rhizosphere that can promote nutrients requisition, biostasis and disease-resistance, therefore ecologically more resilient than cultivated soybeans.  相似文献   

7.
Land-use conversion can affect the soil microbial community diversity, soil organic matter and nutrient cycling. In this study, soils within a representative land-use sequence were sampled in a subtropical region of China, including four natural forests, Altingia gracilipes Hemsl. (ALG), Cinnamomum chekiangense Nakai (CIC), Castanopsis fargesii Franch. (CAF), and Tsoongiodendron odorum Chun (TSO), and two plantations, Cunninghamia lanceolata (Lamb.) Hook. (CUL) and a citrus orchard (Citrus reticulata Blanco). The soil microbial diversity was investigated by phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE) and real-time quantitative polymerase chain reaction (PCR). Results showed that microbial community diversity exhibited distinct patterns among land-use types. After conversion of natural forests to plantations, the amount of PLFA and the number of bacterial 16?S rRNA gene copies were reduced significantly, as well as the number of DGGE bands. The average quantity of PLFA was lower by 31% in the CUL plantation and 57% in the citrus orchard, respectively, than in natural forests. Simultaneously, the average copy numbers of the bacterial 16?S rRNA gene were significantly decreased from 8.1?×?1010?g?1?dry weight (DW) in natural forest to 4.9?×?1010?g?1 DW in CUL plantation, and 3.1?×?1010?g?1 DW in the citrus orchard. Such negative responses of soil microbes to conversion of natural forests to plantations could mainly result from decreases in soil organic carbon and necessary elements for growth during land-use conversion, as revealed by statistical analysis. Our results suggested that the soil microbial diversity was indirectly in?uenced by land-use types in the mid-subtropical mountainous area of southern China. Changes in the amount of litterfall and the soil nutrient status that resulted from land-use conversion drove these indirect changes. Furthermore, deliberate management brought negative effects on soil microbes, which is not beneficial to the sustainability of the ecosystem.  相似文献   

8.
In recent years, there has been a growing need to understand how salinity affects microbial communities in agricultural soils. Archaeal and bacterial community diversities and structures were investigated by high-throughput sequencing analysis of their 16S rRNA in two arable soils with low electrical conductivity(EC)(2.3 and 2.6 dS m-1) and a saline soil(EC = 17.6 dS m-1). The dominant bacterial phyla in the soils were Proteobacteria(relative abundance(RA) = 46.2%), followe...  相似文献   

9.
Nitrification occurs slowly in many acid Scots pine forest soils. We examined if bacterial community structure and interactions between members of the bacterial community in these forest soils prohibit growth of ammonia-oxidising microorganisms and their nitrifying activity. Native and gamma-irradiated Scots pine forest soils known to have low net nitrification rates were augmented with fresh soils or soil slurries from nitrifying Scots pine forest soil, and vice versa. Augmentation of native non-nitrifying soils with nitrifying soils induced net nitrification, although no significant changes in bacterial community structure, as measured by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), were observed. In sterilised soils, the inoculum, i.e. native nitrifying soil or non-nitrifying soil, determined the occurrence of net nitrification and bacterial community structure, and not the origin of the sterilised soils. Our results demonstrate that low net nitrification rates in acid Scots pine forest soils cannot be (solely) explained by unfavourable abiotic soil conditions, but that still uncaptured biotic factors contribute to suppression of nitrification.  相似文献   

10.
Microbial community structure in saltmarsh soils is stratified by depth and availability of electron acceptors for respiration. However, the majority of the microbial species that are involved in the biogeochemical transformations of iron (Fe) and sulfur (S) in such environments are not known. Here we examined the structure of bacterial communities in a high saltmarsh soil profile and discuss their potential relationship with the geochemistry of Fe and S. Our data showed that the soil horizons Ag (oxic–suboxic), Bg (suboxic), Cr1 (anoxic with low concentration of pyrite Fe) and Cr2 (anoxic with high concentrations of pyrite Fe) have distinct geochemical and microbiological characteristics. In general, total S concentration increased with depth and was correlated with the presence of pyrite Fe. Soluble + exchangable-Fe, pyrite Fe and acid volatile sulfide Fe concentrations also increased with depth, whereas ascorbate extractable-Fe concentrations decreased. The occurrence of reduced forms of Fe in the horizon Ag and oxidized Fe in horizon Cr2 suggests that the typical redox zonation, common to several marine sediments, does not occur in the saltmarsh soil profile studied. Overall, the bacterial community structure in the horizon Ag and Cr2 shared low levels of similarity, as compared to their adjacent horizons, Bg and Cr1, respectively. The phylogenetic analyses of bacterial 16S rRNA gene sequences from clone libraries showed that the predominant phylotypes in horizon Ag were related to Alphaproteobacteria and Bacteroidetes. In contrast, the most abundant phylotypes in horizon Cr2 were related to Deltaproteobacteria, Chloroflexi, Deferribacteres and Nitrospira. The high frequency of sequences with low levels of similarity to known bacterial species in horizons Ag and Cr2 indicates that the bacterial communities in both horizons are dominated by novel bacterial species.  相似文献   

11.
In this study, the effect of deforestation and cultivation of maize (Zea mays L.) on the physicochemical characteristics and the bacterial community structure in soil were studied at the national park Área de Protección de Flora y Fauna Nevado de Toluca in Mexico. Soil was sampled from three forested areas in the national park, from three deforested areas grazed by animals and from three areas cultivated with maize. The soil was characterized chemically and biologically, whilst the bacterial community structure was investigated through 454 pyrosequencing of the 16S rRNA gene. The pH in the forest soil decreased from 6·1 to 5·3 in the maize‐cultivated soil, whilst the soil organic C content decreased 1·4 times in the arable soil compared with the forest soil. The microbial biomass C decreased 2·9 times in the arable soil compared with the forest soil, but the metabolic quotient qCO2 (ratio basal respiration to microbial biomass C) nearly doubled. Deforestation and maize cultivation reduced the abundance of Proteobacteria, Actinobacteria and Bacteroidetes, whereas Acidobacteria, Chloroflexi, Gemmatimonadetes and Firmicutes were resistant to these changes. It was found that soil characteristics were affected negatively by deforestation and nearly half of the organic matter was lost, and on these sloped fields, erosion will be high, further decreasing soil fertility. Although the relative abundance of a number of bacterial groups was reduced by deforestation, others were not affected by land‐use change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
在甘肃河西走廊黑河中游荒漠绿洲过渡区,天然沙质草地被相继转变为农田和防风固沙人工林,但目前尚缺乏不同土地利用/管理方式下地面节肢动物群落对土壤盐渍化响应的系统研究。以天然沙质草地转变的人工梭梭灌木林、人工杨树林、人工樟子松林和农田为研究对象,以天然草地为对照,基于5种研究样地表层土壤盐分及其组成和地面节肢动物群落的观测数据,采用RDA(Redundancy analysis)排序分析等方法,研究了不同土地利用/管理方式下地面节肢动物个体数量和类群丰富度对土壤盐分环境变化的响应机制。主要结果为:(1)土地利用变化与管理措施相互作用驱动了地面节肢动物群落的演变过程,天然草地植被转变为人工林和农田20多年后,显著降低了地面节肢动物群落的数量而对类群丰富度无显著影响。(2)地面节肢动物群落的变化受土壤pH、Na+、Mg2+、Cl-离子的共同影响,其中土壤pH、Na+和Mg2+离子对动物群落变化的贡献率最大,是关键生态因子。(3)动物个体数量随土壤pH的增加而增加,随Mg2+、Cl-离子浓度的增加而下降。研究表明,土地利用变化引起的土壤盐分环境改变是驱动地面节肢动物群落演变的重要因素之一。  相似文献   

13.
Soil microbial communities were examined in a chronosequence of four different land-use treatments at the Konza Prairie Biological Station, Kansas. The time series comprised a conventionally tilled cropland (CTC) developed on former prairie soils, two restored grasslands that were initiated on former agricultural soils in 1998 (RG98) and 1978 (RG78), and an annually burned native tallgrass prairie (BNP), all on similar soil types. In addition, an unburned native tallgrass prairie (UNP) and another grassland restored in 2000 (RG00) on a different soil type were studied to examine the effect of long-term fire exclusion vs. annual burning in native prairie and the influence of soil type on soil microbial communities in restored grasslands. Both 16S rRNA gene clone libraries and phospholipid fatty acid analyses indicated that the structure and composition of bacterial communities in the CTC soil were significantly different from those in prairie soils. Within the time series, soil physicochemical characteristics changed monotonically. However, changes in the microbial communities were not monotonic, and a transitional bacterial community formed during restoration that differed from communities in either the highly disturbed cropland or the undisturbed original prairie. The microbial communities of RG98 and RG00 grasslands were also significantly different even though they were restored at approximately the same time and were managed similarly; a result attributable to the differences in soil type and associated soil chemistry such as pH and Ca. Burning and seasonal effects on soil microbial communities were small. Similarly, changing plot size from 300 m2 to 150 m2 in area caused small differences in the estimates of microbial community structure. In conclusion, microbial community structure and biochemical properties of soil from the tallgrass prairie were strongly impacted by cultivation, and the microbial community was not fully restored even after 30 years.  相似文献   

14.
本试验以黄瓜与西芹间作种植模式为处理,黄瓜单作和西芹单作种植模式为对照,利用Illumina公司Miseq平台对上述不同处理土壤进行16S rDNA细菌群落多样性高通量测序分析和田间接种黄瓜枯萎病菌,探讨黄瓜与西芹间作模式土壤细菌的多样性及其对田间黄瓜枯萎病发生的影响。16S rDNA测序结果表明,黄瓜与西芹间作土壤的细菌物种总数最多,群落多样性水平最高,与对照相比显著提高了土壤细菌observed species指数、Shannon指数和Chao1指数(P0.05);Beta多样性聚类分析表明,黄瓜与西芹间作土壤的环境群落物种与黄瓜单作和西芹单作有一定差异性。在门分类水平上,共检测到45个菌门,其中变形菌门占明显优势,其次为酸杆菌门和放线菌门等;黄瓜与西芹间作土壤细菌种类所占比例最高,达98.63%。在属水平上,共检测到428类菌属,GP6、GP16、GP4、芽单胞菌属、节细菌属5属的丰度值较大;黄瓜与西芹间作土壤的节细菌属分布比例最高,红游动菌属、鞘氨醇单胞菌属和芽球菌属丰度值较大,为黄瓜与西芹间作土壤细菌明显优势菌属。田间接种黄瓜枯萎病菌试验结果表明,采用上述3种不同种植模式土壤种植黄瓜,在黄瓜苗期接种黄瓜枯萎病菌,黄瓜与西芹间作处理的黄瓜枯萎病的田间发病率较西芹单作和黄瓜单作分别降低57.03%~63.54%和66.95%~72.15%。因此,黄瓜与西芹间作增加了土壤细菌群落多样性,降低了黄瓜枯萎病的发病率,对后茬黄瓜土传病害防控具有一定科学指导意义。  相似文献   

15.
不同类型水稻土微生物群落结构特征及其影响因素   总被引:5,自引:1,他引:4  
选取基于我国土壤地理发生分类的不同类型土壤发育的四种水稻土,利用15N2气体示踪法测定生物固氮速率,采用实时荧光定量PCR(Real-time PCR)技术测定细菌丰度,通过16S rRNA基因高通量测序分析微生物群落组成和多样性.结果表明:变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria...  相似文献   

16.
Arid soils where water and nutrients are scarce occupy over 30% of the Earth's total surface. However, the microbial autotrophy in the harsh environments remains largely unexplored. In this study, the abundance and diversity of autotrophic bacteria were investigated, by quantifying and profiling the large subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase(Ru Bis CO) form I(cbb L) responsible for CO2 fixation, in the arid soils under three typical plant types(Haloxylon ammodendron, Cleistogenes chinensis,and Reaumuria soongorica) in Northwest China. The bacterial communities in the soils were also characterized using the 16 S r RNA gene. Abundance of red-like autotrophic bacteria ranged from 3.94 × 105 to 1.51 × 106 copies g-1dry soil and those of green-like autotrophic bacteria ranged from 1.15 × 106 to 2.08 × 106 copies g-1dry soil. Abundance of both red- and green-like autotrophic bacteria did not significantly differ among the soils under different plant types. The autotrophic bacteria identified with the cbb L gene primer were mainly affiliated with Alphaproteobacteria, Betaproteobacteria and an uncultured bacterial group, which were not detected in the 16 S r RNA library. In addition, 25.9% and 8.1% of the 16 S r RNA genes were affiliated with Cyanobacteria in the soils under H. ammodendron and R. soongorica, respectively. However, no Cyanobacteria-affiliated cbb L genes were detected in the same soils. The results suggested that microbial autotrophic CO2 fixation might be significant in the carbon cycling of arid soils, which warrants further exploration.  相似文献   

17.
Soil properties and agricultural practices take a joint effect on the communities of soil bacteria. The aim of the present study was to survey Alphaproteobacterial communities as possible indicators of soil quality considering clay, loamy and sandy soils under conventional and organic farming. Alphaproteobacteria community composition were analysed by 16S rRNA gene with nested-PCR (polymerase chain reaction) and denaturing gradient gelelectrophoresis (DGGE). Sequencing of partial 16S rRNA gene from the DGGE bands were performed. Conventional and organic farming resulted in significant differences in chemical properties of soils. According to the results community fingerprints were separated into groups depending on soil types and farming systems. This separation can be attributed mostly to soil pH, AL-P2O5,-K2O. The analysed sequences were identified as soil bacteria which could play the main role in nitrogen fixing, mineralisation and denitrification. The highest diversity index was revealed from the organic farming at sandy texture site, where mainly Mesorhizobium sp. and Rhizobium sp. were detected. The soil type and actual crop could have a stronger impact on the soil bacterial composition than the management.  相似文献   

18.
The microbial activity and bacterial community structure were investigated in two types of peat soil in a temperate marsh. The first, a drained grassland fen soil, has a neutral pH with partially degraded peat in the upper oxic soil horizons (16% soil organic carbon). The second, a bog soil, was sampled in a swampy forest and has a very high soil organic carbon content (45%), a low pH (4.5), and has occasional anoxic conditions in the upper soil horizons due to the high water table level. The microbial activity in the two soils was measured as the basal and substrate-induced respiration (SIR). Unexpectedly, the SIR (μl CO2 g−1 dry soil) was higher in the bog than in the fen soil, but lower when CO2 production was expressed per volume of soil. This may be explained by the notable difference in the bulk densities of the two soils. The bacterial communities were assessed by terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA genes and indicated differences between the two soils. The differences were determined by the soil characteristics rather than the season in which the soil was sampled. The 16S rRNA gene libraries, constructed from the two soils, revealed high proportions of sequences assigned to the Acidobacteria phylum. Each library contained a distinct set of phylogenetic subgroups of this important group of bacteria.  相似文献   

19.
芒萁是最早侵入红壤退化裸地的先锋植物,其侵入过程对土壤环境的改变在退化裸地生态恢复进程中具有重要意义。以福建省长汀县红壤侵蚀裸地为研究对象,分析测定退化裸地中芒萁侵入区和非侵入区土壤理化性质和细菌组成及多样性。结果表明:芒萁侵入裸地显著提高土壤最大持水量、土壤含水率、全碳、全氮、全钾、有机质和pH,并显著降低土壤容重;芒萁侵入区增加根瘤菌目和慢生根瘤菌属等14种土壤优势细菌,变形菌门和甲型(α)变形杆菌的相对丰度显著提高(p<0.05),而土壤绿弯菌门和AD3菌纲的相对丰度显著降低(p<0.05),这些土壤细菌主要功能为化能异养、好氧化能异养和纤维素分解;芒萁侵入裸地显著提高土壤细菌群落结构多样性(p<0.05);芒萁侵入区和非侵入区土壤细菌群落结构差异显著(p<0.05);土壤细菌群落结构的主要影响因子是土壤含水率、全碳、有机质、土壤容重和pH。这些影响因子与疣微菌门、变形菌门、疣微菌纲和甲型(α)变形杆菌纲正相关。综上所述,芒萁侵入后可显著改善红壤侵蚀退化裸地的土壤理化性质,改善土壤细菌群落组成,增加土壤细菌群落多样性和优势菌群,对土壤细菌群落有积极效应。  相似文献   

20.
The structure of the β-proteobacterial autotrophic ammonia-oxidizing bacterial (AOB) communities in a microcosm of submerged paddy soil was determined by denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments amplified using AOB-selective primers. Shift in the community composition was observed 4 weeks after submergence. The communities from the surface layers (0–1, 2–3 mm) of the soil microcosm were different from those of the subsurface layers (6–9, > 15 mm) and DGGE bands specific to each layer were detected. The majority of the retrieved sequences were Nitrosospira-like, whereas no Nitrosomonas-like sequences were obtained. The 16S rDNA primer set also amplified sequences that were not related to the known Nitrosospira-Nitrosomonas group, although they showed a close relationship with other groups of β-proteobacteria. The results suggest that Nitrosospira-like populations are dominant AOB populations in the submerged paddy soil, and that the oxic layer of submerged paddy soil harbours the specific AOB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号