首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
Raspberry fruits were harvested at five developmental stages, from green to red ripe, and the changes in cell wall composition, pectin and hemicellulose solubilization, and depolymerization were analyzed. Fruit softening at intermediate stages of ripening was associated with increased pectin solubilization, which occurred without depolymerization. Arabinose was found to be the most abundant noncellulosic neutral sugar in the cell wall and showed dramatic solubilization late in ripening. No changes in pectin molecular size were observed even at the 100% red stage. Subsequently, as fruit became fully ripe a dramatic depolymerization occurred. In contrast, the hemicellulosic fractions showed no significant changes in content or polymer size during ripening. The paper discusses the sequence of events leading to cell wall disassembly in raspberry fruit.  相似文献   

2.
为探究低温对果实采后成熟软化与淀粉降解的影响,以红阳猕猴桃果实为试验材料,研究在低温贮藏期间,猕猴桃果实硬度,可溶性固形物、乙烯、淀粉含量以及淀粉酶相关基因的变化。结果表明,低温贮藏能显著抑制猕猴桃果实采后成熟软化,延缓果实淀粉的降解和可溶性固形物含量的增加,维持贮藏期间果实较高的硬度。低温贮藏抑制乙烯合成关键基因AcACO1和AcACS1的表达,抑制乙烯合成。同时,低温贮藏显著抑制淀粉降解相关基因AcAMY1、AcBAM1/3、AcISA3、AcLDA1和AcDPE1的表达。在低温贮藏后期,淀粉酶相关基因AcAMY1、AcBAM1/3、AcLDA1和AcDPE1的表达与乙烯释放速率有关。综上,低温贮藏延缓猕猴桃采后成熟软化进程与淀粉降解密切相关,可能主要通过抑制乙烯合成,从而影响贮藏后期淀粉降解速率,最终延缓果实软化进程。本研究结果为猕猴桃采后低温贮藏提供了理论依据。  相似文献   

3.
Softening and pathogen susceptibility are the major factors limiting the marketing of blueberries as fresh fruits, and these traits are associated with fruit cell wall structure. However, few studies that characterize wall modifications occurring during development and ripening have been reported for this fruit. In this study the ripening-associated modifications of blueberry fruit cell walls (composition, pectin and hemicellulose solubilization, and depolymerization) at five stages of ripeness have been analyzed. Xylose was found to be the most abundant noncellulosic neutral sugar associated with fruit walls, and the observed high Xyl/Glc ratio suggested that xylans, which are usually a minor hemicellulosic fruit wall component, are abundant in blueberry. The pectic matrix showed increased solubilization at early and intermediate stages of ripening, but no changes were detected in late ripening. Furthermore, little reduction in pectin polymer size occurred during blueberry ripening. In contrast, hemicellulose levels decreased as ripening progressed, and a clear depolymerization of these components was observed. A model for cell wall degradation in this fruit is discussed.  相似文献   

4.
Tomatoes are grown for fresh consumption or for processing of the fruit. Some ripening-associated processes of the fruit can either contribute to or degrade attributes associated with both fresh and processing quality. For example, cell wall disassembly is associated with loss of fresh fruit firmness as well as with loss of processed tomato product viscosity. Several enzymes contribute to cell wall polysaccharide disassembly. Polygalacturonase (PG, poly[1,4-alpha-d-galactouronide] glucanohydrolase, EC 3.2.1.15) is among the most abundant polysaccharide hydrolases in ripening tomato fruit and is the major contributor to pectin depolymerization. Expansin (LeExp1) is also abundant in ripening fruit and is proposed to contribute to cell wall disassembly by nonhydrolytic activity, possibly by increasing substrate accessibility to other enzymes. Suppression of either LePG or LeExp1 expression alone results in altered softening and/or shelf life characteristics. To test whether simultaneous suppression of both LePG and LeExp1 expression influences fruit texture in additive or synergistic ways, transgenic Lycopersicon esculentum var. Ailsa Craig lines with reduced expression of either LePG or LeExp1 were crossed. Fruits from the third generation of progeny, homozygous for both transgenic constructs, were analyzed for firmness and other quality traits during ripening on or off the vine. In field-grown transgenic tomato fruit, suppression of LeExp1 or LePG alone did not significantly increase fruit firmness. However, fruits suppressed for both LePG and LeExp1 expression were significantly firmer throughout ripening and were less susceptible to deterioration during long-term storage. Juice prepared from the transgenic tomato fruit with reduced LePG and LeExp1 expression was more viscous than juice prepared from control fruit.  相似文献   

5.
The effect of a hormic dose of UV-C (254 nm) on changes in fruit firmness and cell wall-degrading enzyme (CWDE) activity was determined using tomato fruit. Throughout the storage period, a decrease in firmness was jointly observed with an increase of the CWDE (polygalacturonase, pectin methyl esterase, cellulase, xylanase, beta-D-galactosidase, and protease) activity for all treatments, suggesting the involvement of these enzymes in the ripening process. However, the enhancement in the activity of the CWDE was significantly less in fruit subjected to the hormic dose of UV-C. This reduction may explain why irradiated fruit were firmer than control and consequently may explain how UV-C could delay the ripening and senescence process. We suggest that the CWDE are one of the targets of the UV-C, and by this action, irradiation contributed to a delay of the cell wall degradation and consequently retarded softening of the tomato fruit tissues.  相似文献   

6.
The effect of temperature and duration of cooking on plantain and banana fruit texture and cytpoplasmic and cell wall components was investigated. The firmness of both banana and plantain pulp tissues decreased rapidly during the first 10 min of cooking in water above 70 degrees C, although plantain was much firmer than banana. Cooking resulted in pectin solubilzation and middle lamella dissolution leading to cell wall separation (as observed by SEM). Dessert banana showed more advanced and extensive breakdown than plantain. Although dessert banana had a higher total pectin content than plantain, the former had smaller-sized carboxyethylenediaminetetraacetic acid (CDTA) soluble pectic polymers which are associated with plant tissues that have a propensity to soften. Plantain had higher levels of starch and amylose than banana but this was associated with a firmer fruit texture rather than a softening due to cell swelling during starch gelatinization. Different cooking treatments showed that cooking in 0.5% of CaCl(2) solution and temperatures below 70 degrees C had significant effects on maintenance of pulp firmness.  相似文献   

7.
【目的】研究采前、 采后钙处理对葡萄柚果实细胞壁组分、 细胞壁降解酶活性变化及其相关基因表达的影响,可为了解钙与果实细胞壁物质代谢之间的关系,揭示钙对果实软化的作用机理,为调控葡萄柚果实膳食纤维含量,提高果实质地品质提供理论依据。【方法】试验于2011年2月至11月在云南省玉溪市葡萄柚果园进行,供试品种为‘里约红’葡萄柚,该品种于2005年嫁接于当地砧木,株行距为3 m×3 m。试验由采前和采后钙处理两部分组成。采前钙处理在幼果初期、 幼果末期、 膨大初期、 膨大末期、 转色期,叶面喷施2% CaCl2; 采后钙处理在果实成熟采后浸于2% CaCl2溶液5 min, 室温贮藏。之后每15天取样一次,每次取10个果实,测定葡萄柚果肉细胞壁组分、 细胞壁降解酶活性及其基因表达量。【结果】随葡萄柚果实后熟软化,紧密结合型果胶(共价结合型果胶)解聚为松散结合型果胶(水溶性果胶、 离子结合型果胶),紧密结合型半纤维素(24% KOH可溶性半纤维素)解聚使其含量下降,而松散结合型半纤维素含量增加(4%KOH可溶性半纤维素)。果实PG、 PME、 Cx、 α-L-Af和β-Gal酶活性及其基因表达量均随果实软化呈不同程度增加。PME活性在果实采收后表现出较高含量,而PG活性在果实贮藏前期急剧增加,其酶基因的表达量与酶活性变化趋势基本一致。Cx、 α-L-Af和β-Gal活性在贮藏中、 后期上升较快,相关酶基因的表达量亦明显增加。钙处理显著地降低果实细胞壁降解酶活性和基因表达水平,其中采后钙处理对α-L-Af和β-Gal活性和基因表达在贮藏中、 后期的调控作用较显著,酶活性和基因表达均维持在较低水平。【结论】外源钙处理降低细胞壁降解酶活性及其基因表达,抑制了细胞壁物质的解聚,采后钙处理对细胞壁物质代谢的调控效果优于采前钙处理。外源钙处理抑制了细胞壁降解酶基因表达水平,降低了细胞壁降解酶活性,减缓了果胶、 半纤维素的解聚,从而达到调控果实膳食纤维含量、 维持果实质地品质、 延长果实货架期寿命的目的。  相似文献   

8.
为了深入了解猕猴桃果实采后细胞壁多糖物质降解及组织结构变化与果实贮藏性的关系,本研究以红阳和华特猕猴桃果实为试材,对25和4℃贮藏期间的细胞壁多糖物质含量及果胶降解酶活性进行测定,并比较两品种果实在25℃贮藏期间的细胞显微结构和钙组分含量差异。结果表明,在25和4℃贮藏条件下,随着贮藏时间的延长,红阳和华特猕猴桃果实中半纤维素(HCL)、纤维素(CL)和共价结合型果胶(CSP)含量不断降低,水溶性果胶(WSP)含量不断上升,离子结合型果胶(ISP)含量相对稳定。红阳猕猴桃各细胞壁多糖组分含量变化速度较快。两品种猕猴桃果实硬度均与WSP含量呈显著负相关,与CSP含量呈显著正相关。果胶降解酶活性检测结果显示,25℃贮藏前期,红阳猕猴桃中果胶酸裂解酶(PL)和β-半乳糖苷酶(β-Gal)活性显著高于华特;贮藏中后期,红阳中果胶甲酯酶(PME)活性显著高于华特。4℃贮藏期间,红阳中PME活性仍显著高于华特;4℃贮藏前期,红阳中β-Gal活性与华特无显著差异,而PL活性低于华特。相关性分析表明,25℃贮藏期间,与红阳和华特果实软化显著相关的果胶降解酶分别是PME和PL;4℃贮藏期间,与华特果实软...  相似文献   

9.
Ripening affects the quality and nutritional contents of fleshy fruits, and papayas are climacteric fruits very susceptible to postharvest losses due to the fast softening caused by ethylene. This paper reports the changes in respiration, ethylene production, and pulp color and firmness, along with the contents of soluble sugars and major carotenoids, during ripening of 'Golden' papaya, an important Brazilian cultivar that has been exported to North American and European markets. The results obtained for nontreated and ethylene- or 1-MCP-treated papaya suggest that 1-MCP can decrease the quality of treated fruit and that even the use of ethylene for triggering or inducing homogeneous ripening can result in lower quality when compared to that of fruit allowed to ripe naturally.  相似文献   

10.
The effect of postharvest dips in a 1-methylcyclopropene-generating solution of the formulation AFxRD-038 (Rohm & Haas) on plum fruit (Prunus salicina Lindell cv. 'Harrow Sun') quality and ripening during storage was determined. Fruit weight loss, tissue firmness, soluble solids content (SSC), titratable acidity (TA), ethylene production, respiration, and the activities of the cell wall modifying enzymes polygalacturonase (PG), 1,4-beta-D-glucanase/glucosidase (EGase), beta-galactosidase (beta-gal), and pectin methylesterase (PME) were measured. Fruit reddening, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity were also analyzed. The 1-MCP-treated fruit showed reduced ethylene production and respiration rate and delayed softening, which was associated with the reduction in the activity of PG, EGase, and beta-gal. The immersion in 1-MCP-generating solutions also decreased weight and acidity loss without modifying the fruit SSC. The immersion treatment was particularly effective in the fruit stored at 5 degrees C, keeping higher overall quality, maintaining lower levels of anthocyanins and PAL activity, and preventing flesh reddening. The present data show that beneficial effects in delaying plum fruit ripening and controlling chilling injury can be obtained by dipping the fruits in a solution of this novel 1-MCP-generating formulation.  相似文献   

11.
During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.  相似文献   

12.
The green monkey orange (Strychnos spinosa Lam., Loganiaceae), a tree indigenous to tropical and subtropical Africa, produces juicy, sweet-sour, yellow fruits containing numerous hard brown seeds. The species has recently been introduced into Israel as a potential new commercial crop. However, little is known about its agronomical performance, fruit development and ripening, or postharvest physiology. The current study shows that during ripening in storage, the peel color changes from green to yellow, accompanied by a climacteric burst of ethylene and carbon dioxide emission. Total soluble solids slightly increased during storage, whereas total titratable acidity and pH did not change significantly. The major sugars that accumulated during ripening in storage were sucrose, glucose, and fructose, and the main acids, citric and malic acids. The main volatiles present in the peel of ripe fruits were phenylpropanoids, trans-isoeugenol being the major compound.  相似文献   

13.
减压处理对新疆白杏果实软化和细胞壁代谢的影响   总被引:2,自引:1,他引:1  
为了探讨减压贮藏对新疆白杏的保鲜效果,以新疆白杏果实为试料,研究了0℃贮藏条件下减压处理对白杏果实成熟软化和细胞壁代谢的影响。结果表明:减压处理不仅抑制了白杏果实呼吸作用和乙烯释放量的上升,还抑制了果实多聚半乳糖醛酸酶(PG)、果胶甲酯酶(PE)和纤维素酶活性的增加,从而延缓了原果胶和纤维素的降解以及水溶性果胶含量的增加,较好地保持了果实的硬度,延缓果实的软化进程,延长贮藏期。其中,50kPa压力处理效果较好。研究结果为减压贮藏对新疆白杏果实贮藏作用机理的研究提供了依据。  相似文献   

14.
锰超氧化物歧化酶(MnSOD)在植物生长发育与衰老及应对逆境胁迫中发挥重要作用。为探究MnSOD基因在猕猴桃果实后熟软化及采后贮藏过程的作用,本研究以米良1号猕猴桃为试材,克隆了2个MnSOD基因,分别命名为AdMSD1和AdMSD2。AdMSD1包含675 bp的开放阅读框(ORF),编码224个氨基酸,登录号为KY471358;AdMSD2包含690 bp的ORF,编码229个氨基酸,登录号为KY471359。生物信息学分析结果表明,AdMSD1和AdMSD2均编码稳定的碱性亲水蛋白,包含保守金属结合域DVWEHAYY、Mn2+金属结合位点和特征氨基酸。AdMSD1和AdMSD2均由6个外显子和5个内含子组成。进化树结果显示,2个蛋白聚在双子叶植物组的不同分支,属于MnSOD家族的不同成员。定量分析结果表明,AdMSD1在叶片的转录水平最高,在花中的转录水平最低;AdMSD2在花中的转录水平最高,在成熟果中的转录水平最低。2个基因在果实后熟软化过程的转录呈动态变化,但均在软化初期上调,软化Ⅰ期和Ⅱ期下调,进入软化Ⅲ期后再次回升。果实中AdMSD1和AdMSD2的转录水平均在低温贮藏过程中下降。AdMSD1在脱落酸处理的第1和第5天表达上调,而AdMSD2在脱落酸处理后表达下调;AdMSD1在赤霉素处理后表达下调,而AdMSD2在赤霉素处理的第1天表达上调,之后下调。研究结果表明,AdMSDs基因参与猕猴桃果实的后熟软化和采后贮藏过程,为进一步研究SOD在猕猴桃果实采后品质调控中的作用机制奠定了基础。  相似文献   

15.
The development and ripening process of sweet cherry (Prunus avium L. cv. 4-70) on the tree was evaluated. For this purpose, 14 different stages were selected in accordance with homogeneous size and color. Some parameters related to fruit quality, such as color, texture, sugars, organic acids, total antioxidant activity, total phenolic compounds, anthocyanins, and ascorbic acid were analyzed. The results revealed that in sweet cherry, the changes in skin color, glucose and fructose accumulation, and softening process are initiated at early developmental stages, coinciding with the fast increase in fruit size. Also, the decrease in color parameter a was correlated with the greatest accumulation of total anthocyanins. Ascorbic acid, total antioxidant activity (TAA), and total phenolic compounds decreased during the early stages of sweet cherry development but exponentially increased from stage 8, which coincided with the anthocyanin accumulation and fruit darkening. TAA showed positive correlations (r(2) = 0.99) with both ascorbic acid and total phenolic compounds and also with the anthocyanin concentration from stage 8. Taking into account the reduced shelf life of sweet cherry and to ensure that these fruits reach consumers with the maximum organoleptic, nutritional, and functional properties, it is advisable to harvest sweet cherries at stage 12 of ripening.  相似文献   

16.
Cherimoya ripening with and without prior storage at 8 degrees C was studied in fruit harvested on early- (EH), mid- (MH), and late-season (LH) dates. Most of the differences in the ripening behavior were observed between EH cherimoyas and fruit from the other two harvest dates. During ripening of nonstored fruit, the increases in ethylene production and respiration rates and in soluble sugars and organic acids contents were faster in EH than in the other fruits (which ripened 1 day later). These differences could be due to variations in the physiological stage at harvest as a result of the different heat units (degree/month) accumulated in the last month of fruit development. During ripening of cold-stored fruit the differences in the time to the onset of the increase in ethylene production and in the accumulation of malic and citric acid were minimized, especially after longer storage times, and the relationship of harvest date with the increases in respiration rate was lost. Glucose and fructose accumulation was reduced by prior cold storage, especially after longer storage duration and in MH and LH fruit, but sucrose hydrolysis was almost complete, as in nonstored fruit. It is suggested that glucose and fructose accumulation is more sensitive to low temperature than sucrose metabolism and that this differential sensitivity is more marked in MH and LH cherimoyas. The time to ripen was inversely related to prior cold storage duration and was dependent on harvest date: the later the harvest date, the longer storage time it took to shorten subsequent ripening.  相似文献   

17.
不同采收期对苹果常温贮藏品质和衰老的影响   总被引:2,自引:2,他引:0  
以通辽地区的‘塞外红’苹果为试材,研究了生长发育期在116~134 d内的3个采收期果实常温(20±1)℃贮藏品质和软化衰老的变化,以确定‘塞外红’苹果的最佳采收成熟度和适宜采收期。结果表明,随着采收期的推迟,果实硬度逐渐降低,可溶性固形物和可滴定酸含量逐渐升高,种子颜色逐渐变褐到全褐。随着贮藏时间的延长,3个采收期果实的硬度、维生素C和可滴定酸含量均逐渐下降,从采收到贮藏结束,采期Ⅰ果实的硬度一直保持最高,采期Ⅱ保持了果实较高的维生素C和可滴定酸含量,采期Ⅲ果实的可溶性固形物含量SSC一直保持最高。结果还表明,采期Ⅰ的果实常温贮藏期间虽然具有较高的原果胶和纤维素含量,而且抑制了可溶性果胶的生成,推迟了果实多聚半乳糖醛酸酶PG活性和纤维素酶活性高峰,延缓了果实呼吸高峰和乙烯释放高峰的出现时间,但果实的外观色泽、口感和风味相对较差;采期Ⅲ的果实丙二醛和乙醇含量积累较多,果实衰老快。综合分析,采期Ⅱ的‘塞外红’苹果具有良好的内在品质、外观色泽和贮运性能。因此,建议通辽地区‘塞外红’苹果的采收期以9月5—10日为宜(可适当晚采1~2 d),采收成熟度参考标准为:果实生长发育天数123~128 d、果肉硬度11.0~11.5 kg/cm^2、SSC≥16.5%、种子的颜色3/4左右变褐、淀粉染色为4.5级左右。  相似文献   

18.
中国南方梨果采后生理和病理及保鲜技术研究   总被引:5,自引:0,他引:5  
该文总结了近年来分布于我国南方尤其是福建省的梨果采后生理和病理及保鲜技术的研究结果.采后生理涉及果实呼吸、乙烯释放、营养成分、细胞膜透性、膜脂过氧化和果皮色素变化及果实软化机理;梨果实贮藏期病害主要是果实失水、低温冷害、黑心病、果肉褐变等生理性病害和轮纹病、褐腐病、软腐病等侵染性病害;梨果保鲜技术如不同品种耐藏性、采收期、防腐保鲜剂、包装、贮藏环境条件、常温贮运、冷藏保鲜等也进行了研究.  相似文献   

19.
中国南方梨果采后生理和病理及保鲜技术研究   总被引:8,自引:1,他引:8  
该文总结了近年来分布于我国南方尤其是福建省的梨果采后生理和病理及保鲜技术的研究结果。采后生理涉及果实呼吸、乙烯释放、营养成分、细胞膜透性、膜脂过氧化和果皮色素变化及果实软化机理;梨果实贮藏期病害主要是果实失水、低温冷害、黑心病、果肉褐变等生理性病害和轮纹病、褐腐病、软腐病等侵染性病害;梨果保鲜技术如不同品种耐藏性、采收期、防腐保鲜剂、包装、贮藏环境条件、常温贮运、冷藏保鲜等也进行了研究。  相似文献   

20.
Nutritional and physiological significance of micronutrients in coffee plants, especially with regard to nickel (Ni) is still unknown. The dynamics of nitrogen (N), phosphorus (P), potassium (K) and Ni accumulation in coffee fruits, as well as their relationships with total soluble protein, amino acids, reducing sugars, and starch content during coffee fruit development (green, ripe, and dry fruits), were investigated. Coffee trees received three N fertilizer rates (0, 150, and 300 kg of N ha?1) as ammonium sulfate split into three applications per year. Nitrogen fertilization increased reducing sugars and starch concentrations in ripe fruits. In contrast, green fruits showed the highest amino acid and Ni concentrations. Fruit Ni concentration decreased in both green and ripe fruits as N rates increased; thus, indicating the possibility of either a N-associated dilution effect on Ni concentration or that Ni uptake by roots and/or transport to developing fruit was limiting. Plant nutritional status and fruit development stage influenced the coffee grain chemical composition. Furthermore, the variation in reducing sugars and starch content was more closely linked to the stage of fruit development than to N supply. A supposed relationship among the decreased of caffeine, starch, amino acids, and proteins with Ni content during green fruit development suggests a fundamental role for Ni in coffee fruit ripening. The interaction between N and Ni metabolism during fruit ripening might influence the chemical parameters involved in the coffee grain quality. This is the first report documenting changes in Ni concentrations of coffee fruit as a function of N fertilization rates and the development stage, but further research is needed to better understand the significance of N-Ni interaction in developing coffee fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号