首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylamide is a probable human carcinogen that is found in many roasted and baked foods. This paper describes two sensitive and reliable LC-(ESI)MS/MS methods for the analysis of (1) acrylamide and (2) common acrylamide precursors (i.e., glucose, fructose, asparagine, and glutamine) in raw and roasted almonds. These methods were used to evaluate the impact of roasting temperatures (between 129 and 182 °C) and times on acrylamide formation. Controlling the roasting temperature at or below 146 °C resulted in acrylamide levels below 200 ppb at all roasting times evaluated. Six varieties of almonds collected in various regions of California over two harvest years and roasted at 138 °C for 22 min had acrylamide levels ranging from 117 ± 5 μg/kg (Sonora) to 221 ± 95 μg/kg (Butte) with an average of 187 ± 71 μg/kg. A weak correlation between asparagine content in raw almonds and acrylamide formation was observed (R(2) = 0.6787). No statistical relationship was found between acrylamide formation and almond variety, orchard region, or harvest year. Stability studies on roasted almonds indicated that acrylamide levels decreased by 12.9-68.5% (average of 50.2%) after 3 days of storage at 60 °C. Short-term elevated temperature storage may be another approach for mitigating acrylamide levels in roasted almonds.  相似文献   

2.
The influences of composition and roasting conditions on acrylamide formation in almonds and hazelnuts were investigated. Eighteen samples of almonds originating from the U.S. and Europe were analyzed for sugars and free amino acids, and acrylamide formed during roasting was determined. Asparagine was the main free amino acid in raw almonds and correlated with the acrylamide content of dark roasted almonds. Roasting temperature was another key factor and had a very strong influence on acrylamide formation. Almonds of European origin contained significantly less free asparagine and formed significantly less acrylamide during roasting as compared to the almonds from the U.S. Roasted hazelnuts contained very little acrylamide because of the low content of free asparagine in the raw nut. Reducing sugars, although being consumed much faster than free amino acids in both types of nuts, were not decisive for the extent of acrylamide formation during roasting.  相似文献   

3.
The aim of the present study was to quantify some nutritional and safety quality parameter changes that take place in nuts (roasting) and sesame seeds (dehulling, roasting, milling, and sterilization) during processing. Such evaluation was based on chemical analysis of various indicators of lipid alteration in raw and processed pistachios, almonds, peanuts, and tahina. Lipid oxidation was assessed by the evolution of lipid oxidation products including hydroperoxides, p-anisidine, and thiobarbituric acid reactive substances, as well as carboxymethyllysine (CML) and trans fatty acids (tFAs). All these parameters were significantly affected by the different processing stages, especially by roasting and sterilization (tahina). Nut roasting and sesame heat treatment increased the primary (hydroperoxides) and secondary (aldehydic compounds) lipid oxidation products, with the p-anisidine value reaching 6-11.5 and thiobarbituric acid reactive substances 3-5 mg/kg (equiv of malondialdehyde) in the different end products. In addition, roasting led to the formation of CML (between 12.7 and 17.7 ng/mg) and tFAs (between 0.6 and 0.9 g/100 g) in nuts and tahina, which were absent in the raw material. Roasting parameters appear as the critical factor to control to limit the CML and tFA formation in the final product.  相似文献   

4.
The purpose of the following study was to investigate the influence of coffee roasting on the thiol-binding activity of coffee beverages, and to investigate the potential of various green bean compounds as precursors of thiol-binding sites by using promising "in bean" model roast experiments. Headspace gas chromatographic analysis on coffee brews incubated in the presence of the roasty-sulfury smelling 2-furfurylthiol for 20 min at 30 degrees C in septum-closed vessels revealed that the amounts of "free" thiol decreased drastically with increasing the roasting degree of the beans used for preparation of the brews. A half-maximal binding capacity (BC(50)) of 183 mg of 2-furfurylthiol per liter of standard coffee beverage was determined for a roasted coffee (CTN value of 67), thus demonstrating that enormous amounts of the odor-active thiol are "bound" by the coffee. Furthermore, biomimetic "in bean" precursor experiments have been performed in order to elucidate the precursor for the thiol-binding sites in the raw coffee bean. These experiments opened the possibility of studying coffee model reactions under quasi-natural roasting conditions and undoubtedly identified chlorogenic acids as well as thermal degradation products caffeic acid and quinic acid as important precursors for low-molecular-weight thiol-binding sites. In particular, when roasted in the presence of transition metal ions, chlorogenic acids and even more caffeic acid showed thiol-binding activity which was comparable to the activity measured for the authentic coffee brew.  相似文献   

5.
The effect of roasting on the antioxidant status and phenolic profiles of seven commercial Turkish hazelnut varieties (namely, ?ak?ldak, Fo?a, Karaf?nd?k, Mincane, Palaz, Sivri, and Tombul) was assessed. Samples were examined for their total phenolics, oxygen radical absorbance capacity (ORAC) values, condensed tannins, and phenolic acids (free and bound forms). Significant losses (p < 0.05) in total phenolics (~66.3%), ORAC values (~41.6%), condensed tannins (~75.2), and phenolic acids (~42.7) were noted when the hazelnuts were roasted. Some variations both between and within natural and roasted hazelnuts were observed (p < 0.05). Phenolic acids were mainly found in the bound form. Gallic, protocatechuic, p-coumaric, and ferulic + sinapic acids were present in all hazelnut varieties, albeit to different extents, and the first two were dominant. Mincane, in roasted form, had the highest total phenolics, ORAC values, condensed tannins, and phenolic acids. This was due to the presence of some skin in roasted Mincane. No skin was left in all other varieties upon roasting. The present work suggests that roasting results in a significant loss in the antioxidant status and phenolic profiles because of the removal of the skin, which is a rich source of phenolics. It is highly recommended to consume natural hazelnut instead of the roasted counterpart to take advantage of all of the functional benefits of this nut.  相似文献   

6.
The possible adverse effects on health of diet-derived advanced glycation endproducts (AGEs) and advanced lipoxidation endproducts (ALEs) is of current interest. This study had the objective of determining the effects of the addition of AGE/ALE inhibitors and different types of sugar and cooking oil on Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) formation in model foods (sponge cakes). The cake baked using glucose produced the highest level of CML (2.07±0.24 mmol/mol lysine), whereas the cake baked using fructose produced the highest concentration of CEL (25.1±0.15 mmol/mol lysine). There were no significant differences between CML concentrations formed in the cakes prepared using different types of cooking oil, but significant differences (P<0.001) were observed between the cakes prepared using different proportions of cooking oil. The cakes containing oil generated greater concentrations of CML than sucrose. α-Tocopherol and rutin did not inhibit CML and CEL formation. In contrast, ferulic acid and thiamin, thiamin monophosphate, and thiamin pyrophosphate reduced CML and CEL formation.  相似文献   

7.
The objective of this study was to investigate the potential of various raw bean components as precursors of pyrogallol (1), hydroxyhydroquinone (2), catechol (3), 4-ethylcatechol (4), 4-methylcatechol (5), and 3-methylcatechol (6) under quasi "natural" roasting conditions by using the recently developed "in bean" model roast experiments. Freeze-dried, fully extracted bean shells were loaded with aqueous solutions of either single coffee compounds or fractions isolated from the raw bean solubles. After freeze-drying, these reconstituted beans were roasted, aqueous coffee brews were prepared, and the target phenols were quantified by means of a stable isotope dilution assay with LC-MS/MS detection. On the basis of the quantitative data, it can be concluded that upon coffee bean roasting, catechol (3) is primarily formed by degradation of caffeoylquinic acids from both the caffeic acid and the quinic acid moiety of the molecule, as well as from Maillard-type reactions from carbohydrates and amino acids. In contrast, pyrogallol (1) and hydroxyhydroquinone (2) are efficiently generated from carbohydrates and amino acids and, in addition, from free or chlorogenic acid bound quinic acid moieties. 4-Ethylcatechol (4) is exclusively generated upon thermal breakdown of caffeic acid moieties. 3-Methylcatechol (6) is formed primarily from the Maillard reactions and, to a minor extent, also from various phenolic precursors, whereas 4-methylcatechol (5) is produced in trace amounts only from all of the different precursors investigated. On the basis of this precursor study, reaction routes explaining the formation of the target phenols are proposed.  相似文献   

8.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

9.
The processes of peanut maturation, curing, and roasting are known to have an important role in peanut flavors. One of these processes (i.e., roasting) has been found to have an effect on allergenicity. To determine if the other processes (i.e., maturation and curing) affect allergenicity, mature and immature roasted peanuts and peanuts cured at different temperatures (35-77 degrees C) were, respectively, tested for IgE binding and advanced glycation end adducts (AGEs). Peanuts with and without stress proteins, which are associated with peanut maturation and curing, were also tested. Results showed that mature roasted peanuts exhibited a higher IgE binding and AGEs level than immature roasted peanuts. Curing temperatures between 35 and 60 degrees C gave no difference in the profiles. However, a higher curing temperature (i.e., 77 degrees C) exhibited a profile of higher levels of AGEs and IgE binding. These levels were higher in peanuts with stress proteins than without stress proteins. Roasting increased stress protein level and IgE binding. From these results, the processes of maturation and curing, in conjunction with roasting, may be associated with allergenicity, suggesting that these processes may lead to changes in the allergenic properties of peanuts.  相似文献   

10.
Recently, we have shown that roasted peanuts have a higher level of IgE binding (i.e., potentially more allergenic) than raw peanuts. We hypothesized that this increase in IgE binding of roasted peanuts is due to an increased levels of protein-bound end products or adducts such as advanced glycation end products (AGE), N-(carboxymethyl)lysine (CML), malondialdehyde (MDA), and 4-hydroxynonenal (HNE). To support our hypothesis, we produced polyclonal antibodies (IgG) to each of these adducts, determined their levels in raw and roasted peanuts, and examined their ability to bind to IgE from a pooled serum of patients with clinically important peanut allergy. Results showed that AGE, CML, MDA, and HNE adducts were all present in raw and roasted peanuts. Roasted peanuts exhibited a higher level of AGE and MDA adducts than raw peanuts. IgE was partially inhibited in a competitive ELISA by antibodies to AGE but not by antibodies to CML, MDA, or HNE. This indicates that IgE has an affinity for peanut AGE adducts. Roasted peanuts exhibited a higher level of IgE binding, which was correlated with a higher level of AGE adducts. We concluded that there is an association between AGE adducts and increased IgE binding (i.e., allergenicity) of roasted peanuts.  相似文献   

11.
Shelled almonds of two Italian varieties, Romana and Pizzuta, peeled and unpeeled, were roasted and packed under different conditions: air (control), vacuum, and Maillard reaction volatile compounds (MRVc) derived from the roasting process. Samples were stored for approximately 8 months at room temperature, without light, and, at regular intervals, were collected and analyzed to evaluate the progress of lipid oxidation. Peroxide values, triglyceride oligopolymers, and oxidized triglycerides were evaluated during the storage time. Results showed that, although the MRVc atmosphere did not protect the lipid fraction of almonds as well as the vacuum condition; nevertheless, it was more protective than the control atmosphere, showing an antioxidant effect. The effect of the natural coating was a strong protection against lipid oxidation; in fact, only the unpeeled samples showed peroxide values lower than the threshold of acceptability (25 milliequiv of O(2)/kg of oil). Moreover, at the end of the storage period, Pizzuta almonds showed a greater deterioration than those of the Romana variety.  相似文献   

12.
The cocoa roasting process at different temperatures (at 125 and 135 degrees C for 3 min, plus 44 and 52 min, respectively, heating-up times) was evaluated by measuring the initial and final free amino acids distribution, flavor index, formol number, browning measurement, and alkylpyrazines content in 15 cocoa bean samples of different origins. These samples were also analyzed in manufactured cocoa powder. The effect of alkalinization of cocoa was studied. Results indicated that the final concentration and ratio of tetramethylpyrazine/trimethylpyrazine (TMP/TrMP) increased rapidly at higher roasting temperatures. The samples roasted with alkalies (pH between 7.20 and 7.92), such as sodium carbonate, or potassium plus air injected in the roaster during thermal treatment, exhibited a greater degree of brown color formation, but the amount of alkylpyrazines generated was adversely affected. The analysis of alpha-free amino acids at the end of the roasting process demonstrated the importance of the thermal treatment conditions and the pH values on nibs (cocoa bean cotyledons), liquor, or cocoa. Higher pH values led to a lower concentration of aroma and a higher presence of brown compounds.  相似文献   

13.
In the present study, the influence of coffee roasting on free and melanoidin-bound phenolic compounds and their relationship with the brews' antioxidant activity (AA), evaluated by TRAP, TEAC, and TRAP, were investigated. Changes in the relative content of free chlorogenic acids (CGA), free lactones, and melanoidin-bound phenolic acids during roasting indicate that phenolic compounds were incorporated into melanoidins mainly at early stages of the process, being thereafter partly oxidized to dihydrocaffeic acid, and degraded. Although less than 1% of CGA in green coffee was incorporated into melanoidins during roasting, the relative content of melanoidin-bound phenolic acids increased significantly during this process, reaching up to 29% of total phenolic compounds in brews from dark roasted coffees. Regardless of the AA assay used and considering all roasting degrees, the overall contribution of CGA to the AA of the whole brews was higher than that of melanoidin-bound phenolic compounds. It was estimated that the latter compounds contributed to 25-47% of the AA, depending on the assay used.  相似文献   

14.
This paper reports the use of spectrophotometric and voltammetric methods for the determination of the antioxidant capacity of buckwheat and its products originated from a technological line of a buckwheat roasted groats producer. 80% methanol extracts from raw and roasted buckwheat and groats and hulls obtained from roasted buckwheat were used. The spectrophotometric methods included (1) free radical scavenging activities of the extracts against ABTS*+ radical cation (TEAC) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH RSA) and (2) determination of reducing capacity by the means of Folin-Ciocalteu reagent (FCR) application. The radical scavenging activities of the extracts were also investigated using a voltammetric assay. Moreover, the flavonoids profiles of the studied materials were provided. Buckwheat roasting caused a decrease in TEAC, DPPH RSA, and FCR reducing capacity by 70%. The lowest TEAC, DPPH RSA, and FCR reducing capacities were noted for roasted groats. Both DPPH RSA and TEAC methods were highly positively correlated with the FCR reducing capacity assay (r = 0.98 and r = 0.99). Cyclic voltammograms of analyzed buckwheat extracts were useful for evaluation of the antioxidant capacity. The total charge below the anodic current waveform was correlated with the data obtained by TEAC (r = 0.770), DPPH RSA (r = 0.88), and FCR reducing capacity (r = 0.81). The changes in the antioxidant capacity of buckwheat and its products followed the changes in flavonoids composition. In particular, the concentration of flavonoids was related to measurements by cyclic voltammetry.  相似文献   

15.
The antioxidant effects of water extracts of roasted barley (WERB) were investigated under different roasting temperatures and compared with those of the water extracts of unroasted barley (WEUB). It was found that the Maillard reaction products increased upon increasing the roasting temperatures. Both WERB and WEUB exhibited significant antioxidant activities in linoleic acid and liposome model systems. Although WERB and WEUB afforded considerable protection against the damage of deoxyribose and proteins, the antioxidant efficiency of roasted samples was weaker than that of unroasted samples because of the reduction of antioxidant components (catechin, tocopherol, and lutein) with increasing roasting temperature. Unroasted samples were more effective in reducing power, quenching free radical, hydroxyl radical, and chelating iron than the roasted samples. The different antioxidant activity among roasted and unroasted barley samples may be partly attributed to the changes in catechin, tocopherol, and lutein contents.  相似文献   

16.
Pistachio shells split naturally prior to maturity leading to their unique crack-shell form. Within 24 h of harvest, hull-trapped moisture may cause shell staining. The illegal process of bleaching has been used to restore a desirable white color to pistachio shells. It is not known whether bleaching adversely affects phytochemical levels in pistachios. Therefore, we identified for the first time multiple pistachio skin phenolics as quercetin (14.9 microg/g), luteolin (10.0 microg/g), eriodictyol (10.2 microg/g), rutin (1.6 microg/g), naringenin (1.2 microg/g), apigenin (0.2 microg/g), and the anthocyanins, cyanidin-3-galactoside (696 microg/g) and cyanidin-3-glucoside (209 microg/g). We investigated the effects of bleaching (0.1-50% hydrogen peroxide) on phenolic levels and antioxidative capacities in raw and roasted nuts. Because of their flavylium cation structures, anthocyanins were the most sensitive to bleaching. Bleaching decreased total anthocyanin levels [mug/g of skins (% hydrogen peroxide)]: 905 and 549 (0%); 653 and 145 (0.1%); 111 and 18.4 (5%); 6.1 and 3.2 (25%); 0 and 0 (50%) for raw and roasted nuts, respectively. Bleaching also reduced antioxidative capacity [microM/g of Trolox (% hydrogen peroxide)]: 945 and 725 (0%); 940 and 472 (0.1%); 930 and 455 (5%); 433 and 370 (25%); 189 and 173 (50%), for raw and roasted nuts, respectively. Raw nuts preserved phenolic levels and antioxidant capacity better than roasted nuts, suggesting contributing effects of other substances and/or matrix effects that are destroyed by the roasting process. The destruction of bioactive phenolics in pistachio skins may negatively impact the potential health benefits arising from pistachio consumption.  相似文献   

17.
A procedure has been devised for more rapid preparation of large samples of nutmeats (10-80 lb) for mycotoxin analysis without the use of grinding aids, by combining the grinding and mixing steps into one operation. Ease of cleaning equipment facilitates the preparation of several samples in a short time. The procedure was tested using shelled raw and roasted peanuts, and raw almonds, walnuts, and pecans. The reduction of particle size to pass a 20 mesh screen was attained using a 25 qt Hobart vertical cutter-mixer (VCM) equipped with standard serrated blades and a 40 qt VCM using either a standard serrated blade or a smooth-edge blade modified with sharp-edge notches to increase its cutting ability. Portions of ground composite were removed at various time intervals and particle sizes were measured. Original and check analyses of 12 naturally contaminated samples over a 3 year period indicate that this procedure is practical and reproducible.  相似文献   

18.
19.
The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A.  相似文献   

20.
An MS-based method, combining reversed-phase capillary liquid chromatography (capillary LC) with quadrupole time-of-flight tandem mass spectrometry (nano-ESI Q-TOF MS/MS), was developed with the aim of identifying a set of peptides that can function as markers for peanut allergens. Emphasis was given to the identification of the three major peanut allergens Ara h 1, Ara h 2, and Ara h 3, because these proteins are considered to represent >30% of the total protein content of peanut and are directly relevant for the allergenic potential of this food. The analytical data obtained were used to perform databank searching in combination with de novo sequencing and led to the identification of a multitude of sequence tags for all three peanut allergens. Food processing such as roasting of peanuts is known to affect the stability of proteins and was shown to influence the detection of allergen sequence tags. The analysis of raw and roasted peanuts allowed the identification of five peanut-specific sequence tags that can function as markers of the specific allergenic proteins. For Ara h 1, two peptide markers were proposed, namely, VLEENAGGEQEER (m/z 786.88, charge 2+) and DLAFPGSGEQVEK (m/z 688.85, charge 2+), whereas for Ara h 2 only one peptide, RQQWELQGDR (m/z 439.23, charge 3+), was found to satisfy the required conditions. For Ara h 3, the two specific peptides, SPDIYNPQAGSLK (m/z 695.35, charge 2+) and SQSENFEYVAFK (m/z 724.84, charge 2+), were selected. Other peptides have been proposed as indicative for food processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号