首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The binding activity of chloronicotinyl insecticides, including acetamiprid, nitenpyram and related compounds, to the nicotinic acetylcholine receptors (nAChR) of houseflies was measured. These compounds were defined as ‘acyclic’ compounds. Variations in the binding activity were analysed using comparative molecular field analysis (CoMFA) which is a technique for the analysis of three‐dimensional quantitative structure–activity relationships. The CoMFA results showed that steric interactions were more significant for the acyclic compounds than for imidacloprid and its derivatives (cyclic compounds). It was also shown that the acyclic compounds could bind to housefly‐nAChR in a similar manner to the cyclic compounds, and that the electrostatic natures of the acyclic amino‐ and cyclic imdazolidine‐moieties affected their binding activity. © 2000 Society of Chemical Industry  相似文献   

7.
利用 Hansch方法定量地研究了 2 0种磺酰脲和 16种嘧啶磺酰胺除草剂的结构与活性间关系。结果表明这两类化合物的构效关系是一致的 ,这意味着它们能作用于靶标的同一部位。影响化合物活性的主要因素是分子的电性 ,它们与受体作用时具有一个最佳电性值 (Σσ或 p Ka)。  相似文献   

8.
9.
10.
The issue of cross‐ or multiple resistance to acetolactate synthase (ALS) inhibitors and the auxinic herbicide 2,4‐D was investigated in Papaver rhoeas L., a common and troublesome weed in winter cereals, in a broad‐scale study across four European countries. A combination of herbicide sensitivity bioassays and molecular assays targeting mutations involved in resistance was conducted on 27 populations of P. rhoeas originating from Greece (9), Italy (5), France (10) and Spain (3). Plants resistant to the field rate of 2,4‐D were observed in 25 of the 27 populations assayed, in frequencies ranging from 5% to 85%. Plants resistant to ALS‐inhibiting herbicides (sulfonylureas) were present in 24 of the 27 populations, in frequencies ranging from 4% to 100%. Plants resistant to 2,4‐D co‐occurred with plants resistant to sulfonylureas in 23 populations. In four of these, the probability of presence of plants with cross‐ or multiple resistance to 2,4‐D and sulfonylureas was higher than 0.5. ALS genotyping of plants from the field populations or of their progenies, identified ALS alleles carrying a mutation at codon Pro197 or Trp574 in 2,4‐D‐sensitive and in 2,4‐D‐resistant plants. The latter case confirmed multiple resistance to 2,4‐D and ALS inhibitors at the level of individual plants in all four countries investigated. This study is the first to identify individual plants with multiple resistance in P. rhoeas, an attribute rarely assessed in other weed species, but one with significant implications in designing chemical control strategies.  相似文献   

11.
Based on the multiple binding sites of acetylcholinesterase (AChE), a series of AChE inhibitors: phthalimide alkyloxyphenyl N,N-dimethylcarbamate were designed and synthesized. AChE inhibitory activity and structure–activity relationship of the compounds were researched also. The influence of structural variations on the inhibitory potency was carefully investigated by modifying different alkyloxy chain length and position between phthalimide and phenyl N,N-dimethylcarbamate (PDM). The biological properties of the series were investigated by considering the activity on isolated enzyme. Some of the newly synthesized derivatives, when tested on isolated AChE from head of housefly (Musca domestica), were more active than PDM. The compounds J1, J2 and K1K8 demonstrated higher inhibitory activity (5- to 404-fold) for AChE than that of PDM. In particular, compound K1 displayed the best AChE inhibition (404-fold higher than PDM), which suggested that phthalimide group of K1 strongly bound at the residues lining the gorge while phenyl N,N-dimethylcarbamate bound at the catalytic site.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The four diastereomers of 2-cyano-N-[1-(2,4-dichlorophenyl)ethyl]-3,3-dimethyl-butyramide were prepared by a direct HPLC separation with chiral columns. The [(S)acid, (R)amine]-isomer (was the most antifungal among the diastereomers tested. Because of the lability of the clinical group in the acid moiety, the (RS)-(R)-isomer is being developed as a rice blasticide. (S-2900, proposed common name diclocymet).  相似文献   

19.
20.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号