首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
根据1986-2013年我国农业机械化综合水平的统计数据,建立了基于GA-BP神经网络的农业机械化综合水平预测模型。通过对1992-2011年农业机械化综合水平实际值与训练输出值的对比分析,表明该预测模型具有较好的拟合精度;采用该模型对2012年和2013年的农业机械化综合水平进行预测,进一步验证了模型的可靠性。运用该预测模型对2014-2018年的农业机械化综合水平进行预测,结果表明:在2014年我国农业机械化综合水平为61.97%,与我国农业部公布的2014年农业机械化综合水平将超过61%基本相符,2018年我国农业机械化综合水平将达到70%左右。  相似文献   

2.
采用黄金分割原理优化算法确定BP神经网络的隐含层节点数,进而确定BP神经网络的结构,并针对BP神经网络容易陷入局部极小值和全局搜索能力弱的缺点,引人遗传算法(GA)优化网络权值,建立GA-BP网络模型,预测作物参考腾发量ET0.以北京地区的相关资料为基础,选用6种输入因子组合方案,对该模型进行验证,结果表明该网络模型具有较好的预测能力;同时,对6种方案比较分析表明,方案4最优,该方案只需选用4项输入因子(日序数、平均气温、风速和日照时数),就能以较高的精度预测作物参考腾发量.  相似文献   

3.
为解决果园需水量预测精度低、鲁棒性差等问题,提出了遗传算法(GA)优化BP神经网络的果园需水量预测模型.选取空气温度、土壤含水率、光照强度3个主要环境因子作为BP神经网络的输入量,利用遗传算法的全局搜索能力优化神经网络权值和阈值,建立GA-BP神经网络模型预测果园需水量.仿真结果表明:GA-BP预测模型的预测值比BP模型更加趋近期望需水量,模型评价指标平均绝对百分比误差(MAPE)、均方根误差(RMSE)和平均绝对误差(MAE),均优于单一BP神经网络模型.与传统的BP神经网络算法相比,GA-BP神经网络模型能较好的表达果园需水量与主要环境因子的非线性关系,具有较高的预测精度和适应性.  相似文献   

4.
NAR神经网络具有反馈和记忆功能,其在时间序列的建模仿真方面具有显著优点。以城市居民生活需水定额为例,采用NAR神经网络建立了贵州省城市居民生活需水定额的时间序列模型,通过试验法、留一法交叉检验讨论了模型相关输入参数的计算与选取,通过相关系数、Nash效率系数、LBQ检验、ROC曲线方法检验了模型的性能和预测结果的精度,进而对贵州省城市居民生活需水定额变化趋势进行了预测。结果表明,(1)NAR模型性能良好并具有较高的预测精度,NAR神经网络的相关系数r、Nash效率系数分别达到0.97、0.87,LBQ检验得出预测结果误差不存在自相关性,采用预测结果绘制ROC曲线,其AUC值达到0.938(处于水平1,有较高准确性);(2)需水定额合理性评价中,预测2020年、2030年需水定额分别为137.72 L/(人·d)、132.94 L/(人·d),满足《室外给水设计规范》(GB50013—2006)的要求,具有较好的适用性。  相似文献   

5.
【目的】准确预测果树需水量。【方法】对采集地果园环境数据进行主成分分析,筛选出影响果树蒸腾量的关键因子。建立以长短时记忆(LSTM)神经网络为基础的预测模型来预测果树蒸腾量。为提高预测的精度,在LSTM神经网络的基础上加入了注意力(Attention)机制,形成Attention-LSTM预测模型。【结果】将改进的模型与其他模型的预测精度进行对比,仿真试验表明,该模型的预测精度最高,RMSE和MSE分别为0.487和0.062。【结论】该预测模型可以准确预测果树蒸腾量,从而实现果园精准灌溉并提高水果产量,具有一定的实际意义。  相似文献   

6.
鲜食玉米因其营养丰富、用途广泛、市场潜力大等优势而备受关注,目前,我国鲜食玉米种植面积逐渐扩大,鲜食玉米产量的高效预测对制定其生长期间的精准管理决策具有重要意义。针对传统BP神经网络在预测中存在测试精度低、鲁棒性差等问题,利用遗传算法(Genetic Algorithm,GA)对BP神经网络模型进行优化,构建GA BP神经网络模型。基于2010—2021年间田间物联网获取的气象因子(大气湿度、大气温度、降雨量)、田间水热因子及鲜食玉米实际产量,分别采用BP神经网络、GA BP神经网络模型及粒子群优化算法(Particle Swarm Optimization,PSO)优化BP神经网络(PSO BP)对所选地区鲜食玉米产量进行预测与相关性分析。结果表明,鲜食玉米产量与月最低土壤温度、月平均土壤温度、月大气最高温度和月平均大气湿度相关性极显著,相关系数高于0.8,与月最高温度、月土壤平均含水率、月大气平均温度、月降雨量相关性显著,与月大气最低温度相关性较弱。GA BP神经网络模型精度明显高于PSO BP及BP神经网络模型,R2达到0.956 4。因此,通过GA BP神经网络模型可以更科学、合理地对鲜食玉米的产量进行预测,从而对鲜食玉米生产及管理措施的调整具有重要的指导意义。  相似文献   

7.
基于GA-BP神经网络的池塘养殖水温短期预测系统   总被引:1,自引:0,他引:1  
为解决传统的水温小样本非实时预测方法预测精度低、鲁棒性差等问题,基于物联网实时数据,提出了遗传算法(GA)优化BP神经网络的池塘养殖水温短期预测方法,并在此基础上设计开发了池塘养殖水温预测系统,首先采用主成分分析法筛选出影响池塘水温的关键影响因子,减少输入元素;然后使用遗传算法对初始权重和阈值进行优化,获取最优参数并构建了基于BP神经网络的水温预测模型;最后采用Java语言开发了基于B/S体系结构的预测系统。该系统在江苏省宜兴市河蟹养殖池塘进行了预测验证。结果表明:该系统在短期的水温预测中具有准确的预测效果,与传统的BP神经网络算法相比,研究内容评价指标平均绝对误差(MAE)、平均绝对百分误差(MAPE)和误差均方根(MSE)分别为0.196 8、0.007 9和0.059 2,均优于单一BP神经网络预测,可满足实际的养殖池塘水温管理需要。  相似文献   

8.
针对水资源承载力评价指标模糊性与随机性的问题,将正态云模型应用于其评价当中。基于正态云模型,以浙江省为例,对区域水资源承载力状况进行评价。结果表明:2006-2009年间,浙江省水资源承载力状态始终处于Ⅱ级(一般)状态,较为平稳,水资源承载力综合值从1.960 3上升为2.052 2,区域水资源承载力水平有增加趋势,但个别评价指标仍处于危险状态,其单因子指标值1.5,有待于进一步提高与改善;正态云模型使水资源承载力的定量评价兼顾随机性和模糊性,研究结果可为区域水资源可持续发展提供一定的参考借鉴。  相似文献   

9.
王辉  王斌  徐静  赵艳 《农机化研究》2013,35(3):218-220,241
在乳制品加工生产中,产品生产质量是生产过程中的关键因素。为了实现产品生产质量的管理,引入了基于人工神经网络的预测方法,以实际生产过程中实验室检测数据以及仪表观测数据作为网络学习样本,通过训练网络模型并将训练后预测模型应用于乳制品企业实际生产,为产品质量分析提供了可靠的依据。  相似文献   

10.
甘蔗联合收割机收获质量对制糖工艺有极大影响,但测量难度大,难以直接获得.针对上述问题,以甘蔗联合收割机切割机构、行走机构、切段机构、风机机构的负载压力信号和转速信号为输入变量,以含杂率和损失率为输出变量,建立了一种GA-BP神经网络预测模型.GA-BP神经网络预测模型对甘蔗收获质量的预测结果平均MSE为0.0937,平...  相似文献   

11.
基于BP神经网络的农机总动力组合预测方法   总被引:4,自引:1,他引:4  
鉴于单一预测模型和线性组合预测模型的局限性,在确定黑龙江省农机总动力单一预测模型的基础上,建立了基于BP神经网络的非线性农机总动力组合预测模型。误差分析表明,该非线性组合预测模型的拟合平均绝对百分误差为3.03%,低于一元线性回归模型、指数函数模型、灰色GM(1,1)模型和三次指数平滑模型的6.26%、4.65%、4.88%和3.72%;稍高于以误差平方和最小为原则构建的线性组合预测模型的2.86%。用2006~2008年黑龙江省农机总动力进行检验预测,结果表明该模型可以有效地提高农机总动力的预测精度,用该模型预测了黑龙江省2009~2015年农机总动力。预测结果表明,在未来几年黑龙江省农机总动力将保持快速增长趋势,到  相似文献   

12.
针对传统主、客观赋权方法的局限性,提出组合赋权思想。采用G2赋权法确定主观权重,CRITIC赋权法确定客观权重,并通过博弈论的组合赋权思想,充分挖掘权重信息。考虑到组合赋权的可信性,引入Kullback相对熵理论,验证三者之间一致性。同时运用正态云模型对水质状况进行识别与比较分析,充分反映水质变化趋势。该模型运用于新疆独山子区8组水样水质评价中,并与模糊综合评价法结果进行对比。研究表明,该方法评价结果准确、相对简单,是一种科学、实用的评价方法。  相似文献   

13.
基于径流分类的日径流量预测神经网络模型   总被引:2,自引:0,他引:2  
王玲  黄国如 《灌溉排水》2002,21(4):45-48
利用聚类分析法将径流序列分解为若干个子径流序列,对这些子径流序列分别建立局部神经网络模型,而后把这些局部模型合并成一个混合模型。当新的信息进入该模型时,首先用分类器判别其类别,以确定用混合模型中的何种局部模型加以模拟。通过与不加分类的总体神经网络模型的模拟结果加以对比,结果表明这种基于径流分类的降雨-径流模型表现出了更优良的性能,可以较大地提高径流模拟精度。  相似文献   

14.
基于神经网络的离心泵汽蚀性能预测   总被引:1,自引:0,他引:1  
介绍了离心泵汽蚀性能预测的研究现状,分析了离心泵汽蚀性能预测的主要研究方法.根据设计流量下离心泵汽蚀余量的影响因素,确定人工神经网络的拓扑结构.应用MATLAB的神经网络工具箱,建立单级单吸离心泵汽蚀性能预测的BP神经网络(Back Propagation Neural Network)和RBF神经网络(Radial Basis Function Neural Network)两种人工神经网络模型.用工程实践中得到的57台离心泵几何参数和试验数据作为样本来训练建立好的网络,并用6台离心泵的数据来测试网络.预测值与试验值的相关性分析表明,BP和RBF网络的预测结果均较好,其中BP网络预测模型的平均相对偏差为5.69%,RBF网络预测模型的平均相对偏差为6.32%,可满足工程应用的要求.  相似文献   

15.
采用RBF网络与BP网络的方法,利用MATLAB工具箱并结合气象资料中的相对湿度、平均气温和太阳日辐射量,建立了预测核桃作物需水量的神经网络预测模型.两种预测模型通过实例证实了预测的准确性,并且将这两种网络模型进行了比较分析.RBF神经网络预测作物需水量的绝对误差平均值为0.254 7 mm/d、相对误差平均值为5.47%,BP神经网络预测作物需水量的绝对误差平均值为0.320 6mm/d、相对误差平均值为6.97%,由此可见,RBF网络预测的精度比BP网络高.并且,通过程序记时显示RBF网络训练用时0.063 0 s,比BP网络训练所需的时间要短的多,因此RBF神经网络具有较好的实用价值,实现了精度与实用性的统一.  相似文献   

16.
道路交通事故预测是交通研究的一个重要课题,以我国交通安全状况为研究对象,依据我国道路交通事故的特点,利用神经网络具有自学习、自组织、自适应能力特征,运用神经网络的方法及我国多个年度道路交通事故统计数据,建立了道路交通事故神经网络宏观预测模型,预测精度符合道路交通事故预测的要求.  相似文献   

17.
近年来,国内干旱灾害频发,影响了正常的农业生产和经济发展,因此精确预测干旱发生具有重要意义。基于1960-2019年新疆维吾尔自治区气象站点的逐日降水量数据,计算了1、3、6、9、12及24个月时间尺度的标准化降水指数(SPI),利用差分自回归移动平均模型(ARIMA)和集合经验模态分解(EEMD)-ARIMA组合模型,分别对多尺度的SPI进行预测,并通过均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)对预测结果进行评价。结果表明:EEMD-ARIMA组合模型的预测结果与新疆年鉴记录情况较为一致,能够用于对干旱进行预测;组合模型能够有效减少序列的非平稳性,相较单一模型能更好地预测SPI序列;EEMD-ARIMA组合模型在干旱预测中具有明显优势,在各时间尺度,组合模型预测精度均高于单一模型,能更准确地进行预测。  相似文献   

18.
基于RBF神经网络的地下水动态预测   总被引:1,自引:0,他引:1  
以内蒙古自治区巴彦淖尔市金泉工业园区为例,基于园区B248号长观井2001-2008年的地下水埋深资料,首先建立了地下水埋深RBF神经网络预测模型,而后对该模型的模拟结果作误差分析,并将相应值与BP网络模型进行对比。RBF神经网络模型和BP网络模型的最大相对误差分别为9.88%和19.67%,最大绝对误差分别为0.81和1.56,均方误差分别为0.19和0.98。显然,RBF神经网络具有较高的预测精度和较强的非线性映射能力。用上述训练好的RBF神经网络模型对研究区2009-2013年平水年条件下的地下水埋深进行预测,结果表明,研究区已出现地下水位持续下降的趋势。最后,根据地下水资源保护规划方案,在逐时段压缩地下水开采量10%的情况下,研究区2025年即可恢复到2001年的地下水水位值。  相似文献   

19.
马铃薯是我国重要的粮食作物之一,营养丰富,用途广泛,是一种谷物、蔬菜和水果功能兼具的食物,其蛋白质含量远高于其他块茎类食物,且富含优质的氨基酸。马铃薯生育期短,在湖北平原、丘陵地区冬种春收适宜发展早熟品种,对于填补全国南北方鲜薯市场供应空档期具有重要意义。因此,马铃薯产量的高效预测对于制定生长期间的种植管理措施及相关决策具有重要意义。为此,针对传统BP神经网络在产量预测中存在精度低、鲁棒性差等问题,利用鲸鱼算法(Whale optimization algorithm, WOA)对BP神经网络模型进行优化。同时,基于湖北地区2009-2021年间田间物联网获取的气象因子(大气湿度、大气温度、降雨量)、田间水热因子及马铃薯产量,采用BP神经网络模型、GA-BP神经网络模型(遗传算法优化)及WOA-BP神经网络模型对所选地区马铃薯产量进行预测。研究结果表明:WOA-BP神经网络模型精度明显高于GA-BP神经网络模型及BP神经网络模型,R2达到0.9764,预测值与试验值之间拟合程度较高,表明基于WOA-BP神经网络模型可以更加科学、合理、准确地进行马铃薯产量预测。  相似文献   

20.
基于神经网络的离心泵能量性能预测   总被引:1,自引:0,他引:1  
总结了BP网络和RBF网络在离心泵能量性能预测中的应用现状,介绍了这两种网络的结构及特点.分别采用BP网络和RBF网络建立了离心泵能量性能预测模型.用57组数据对这两个预测模型进行了训练,并用6组数据对两种网络结构的性能预测模型进行了仿真.研究结果表面:两种网络结果的预测模型预测精度比较接近且预测结果的趋势也相同,BP网络预测精度略高于RBF网络;BP网络扬程平均预测误差为3.85%,效率平均预测误差为1.39%,RBF网络扬程平均预测误差为4.79%,效率平均预测误差为3.43%;RBF网络预测所需时问仅为BP网络预测所需时间的一半.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号