首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为进一步提升对复杂海洋目标的检测能力,引入自适应尺度的注意力机制,提出一种适应多尺度复杂海洋目标的改进Faster R-CNN模型,该模型通过将卷积网络与SKNet网络相结合,增强模型的特征提取能力与特征有效性,并针对船舶、蚝排、红树林、海岸线4类典型海洋目标,利用91卫图助手与无人机高清影像建立了12 000张样本库,分别基于改进的Faster R-CNN模型与原模型进行对比测试试验。结果表明:改进的模型虽然略微增加了计算量,但其特征提取能力与目标检测能力明显强于原模型,整体识别准确率为87.1%;在4类典型海洋目标中,船舶的识别准确率最高,可达94.4%,而红树林由于其特征比较复杂,边界不明显,其整体识别准确率为75.1%。研究表明,引入SKNet网络的Faster R-CNN网络模型,不仅增强了模型对多尺度复杂目标的特征提取能力,更适用于对复杂海洋目标的检测与识别。  相似文献   

2.
为了克服水下鱼类图像样本量不足及实现对水下低清晰度图像中鱼类的快速检测,提出了一种基于Faster R-CNN二次迁移学习和带色彩恢复的多尺度视网膜增强算法(MSRCR)的方法,首先通过ImageNet预训练模型对Open Images高清鱼类数据集进行一次迁移学习初步训练网络,然后固定检测模型低3层的卷积网络参数,再用水下拍摄的小规模鱼类数据集进行二次迁移学习微调网络,最后通过MSRCR算法对水下拍摄图像进行处理以增强其与高清鱼类图像的相似性,解决水下图像降质问题,让二次迁移学习高效进行。结果表明,该方法利用小规模水下拍摄鱼类数据集训练出的网络查准率可达到98.12%,网络检测能力及后续提升能力优于传统机器学习方法,并能够实现鱼类目标的快速检测,本研究结果可为深海探测作业与海底鱼类等生物资源的监测、保护和可持续开发等工程应用提供一定的参考。  相似文献   

3.
目前西藏牧区的牦牛养殖在我国畜牧业当中尚处于发展阶段,它的发展很大程度的影响我国牧区畜牧业的经济水平,尤其是对我国西藏牧区为主畜牧养殖业,彻底改革牧区的传统养殖方式非常必要,利用基于图像处理的牦牛目标检测就可以解决传统方式的耗时耗力问题.针对实际的牦牛放养场景,运用深度学习目标分类算法中具有代表性的Faster R-C...  相似文献   

4.
茶芽检测是判断茶树农艺性状的基础,也是研发基于计算机视觉采茶机器人的基础。针对复杂背景中传统茶芽检测方法准确率低、稳定性差等问题,提出一种基于深度学习的茶芽检测方法。以Faster R-CNN(region-convolutional neural network)算法为框架,比较AlexNet、ResNet50、VGG19 3种网络模型茶芽检测性能,寻找最佳网络模型。结果表明,使用VGG19的茶芽检测准确率为86.3%,召回率为96.1%,F1分数为0.909,综合检测效果最优。该方法可很好地应用于复杂背景茶芽检测。  相似文献   

5.
6.
针对Faster R-CNN模型对自然状态下草莓(Fragaria ananassa Duch.)识别准确率不高的问题,以地垄种植草莓的实拍图片为数据源,采用改进RPN结构和更换主干特征提取网络的方法对Faster RCNN模型进行了改进。结果表明,改进Faster R-CNN模型识别成熟草莓平均精度(AP)为0.893 0,识别未成熟草莓平均精度(AP)为0.820 7,草莓识别准确率达到较高水平,解决了未成熟草莓识别困难的问题。同时,为了检验模型的自动计数性能,依据模型的识别结果建立了自动计数与人工计数的线性回归,成熟草莓、未成熟草莓的相关系数分别为0.973 7、0.944 7,自动计数与人工计数拥有较高的相关性,表明改进Faster R-CNN模型具有较高的识别性能与计数能力。  相似文献   

7.
为了实现在自然光照环境下对梨树花芽的数量统计,以梨树主栽树种—‘玉露香’为研究对象,提出了1种基于改进Faster R-CNN的梨树花芽目标识别方法。通过实验对比Faster R-CNN框架下的VGG16、ResNet50以及ResNet101等3种网络模型的平均精度值,选择ResNet101作为FasterR-CNN的基础网络模型,并针对花芽尺度较小的特点,对原始的Faster R-CNN进行修改,在ResNet101的基础下融入特征金字塔网络(FPN)。对1 000张原始图像进行数据增强至10 000张并按8∶2的比例分别用于训练和测试,结果表明:融入特征金字塔网络后,所得模型平均精度值为91.27%,比原始模型77.43%的平均精度值提高了13.84%,检测的平均速度达到0.395 s每副。所提方法对自然光照环境下的梨树花芽检测具有良好的鲁棒性和较高的精度,同时也保证了实时性,可为进一步开展梨树树相及个体研究提供技术参考。  相似文献   

8.
为提高复杂背景下立木图像的识别准确率,提出近似联合训练的Faster R-CNN对立木图像进行目标提取并分类。首先迁移ImageNet上的模型VGG16、ResNet101和MobileNetV2提取图像特征并微调网络,然后构建新的数据集包括7科10种立木图像共2 304张,通过该数据集训练和测试3种网络模型下的Faster R-CNN。结果表明,通过近似联合训练的Faster R-CNN得到的均值平均精度分别是93.64%、92.38%、92.58%,对于不同种属的立木,VGG16网络效果最佳。由于光照会对图像识别造成影响,将光照平衡前后的结果作对比,得到光照平衡后的立木图像识别结果优于平衡前。并利用训练的模型对斜向生长的立木图片进行检测,结果显示生长方向不影响图像识别准确率。证明该方法在具有复杂背景的立木图像上具有良好的效果,对更多立木的识别有一定的参考价值。  相似文献   

9.
为解决测报灯采集图像中害虫依赖人工识别及统计结果可靠性低和准确性差的问题,本研究提出一种改进型Cascade R-CNN田间害虫检测算法。该算法以Cascade R-CNN为基础框架,采用ResNeSt-50作为主干网络,融合了跨通道注意力机制;使用统一目标检测头(unifying object detection heads with attentions,DyHead),并融合尺度感知、空间位置感知和任务感知。此外,采用简单复制-粘贴(simple copy-paste,SCP)方法进行了数据增强。研究共采集到20类害虫总计1 500张图像,制作了符合MS COCO格式(microsoft common objects in context 2017, MS COCO 2017)的测报灯田间害虫数据集。结果显示,本研究提出的方法的F1分数(F1-score)达到了86.2%。当交并比(intersection over union,IoU)为0.5时,其F1-分数与经典Cascade R-CNN、Faster R-CNN和YOLOv4相比,分别提升了2.8、5.8和8.2个百分点。...  相似文献   

10.
目前田间玉米雄穗数量监测主要依靠人工进行,效率低且易出错.为了实现在复杂的田间环境下对玉米雄穗自动识别和计数的任务,使用无人机平台和田间作物表型高通量获取平台采集的田间玉米顶视图像构建数据集,使用Resnet 50作为新的特征提取网络代替原始的VGG 16来优化Faster R-CNN模型.再根据表型平台所获取的高时序、连续图像,进一步使用改进后的模型对试验小区内玉米抽穗期前后20 d的雄穗数量进行监测,以此为依据进行抽穗期判定.该方法在田间作物表型高通量平台获取的图像数据测试集中类平均精度为90.14%,平均绝对误差为4.7328;在无人机平台获取的图像数据测试集中类平均精度为82.14%,平均绝对误差为9.6948.试验结果表明:该模型在田间作物表型高通量获取平台上的检测结果优于无人机平台,且具备一定的应用价值.  相似文献   

11.
为解决因外来海洋生物领域实体复杂且实体间存在嵌套导致命名实体识别效果较差等问题, 提出基于融合注意力机制的卷积神经网络 (CNN) -双向门控循环单元网络 (BiGRU) -条件随机场 ( CRF) 网络模型进行外来海洋生物命名实体识别, 并构造词向量、词性特征向量等特征作为网络模型的联合输入, 以提升网络模型识别效果...  相似文献   

12.
为解决因外来海洋生物领域实体复杂且实体间存在嵌套导致命名实体识别效果较差等问题,提出基于融合注意力机制的卷积神经网络(CNN)-双向门控循环单元网络(BiGRU)-条件随机场(CRF)网络模型进行外来海洋生物命名实体识别,并构造词向量、词性特征向量等特征作为网络模型的联合输入,以提升网络模型识别效果。结果表明:使用融合多特征向量的CNN-BiGRU-CRF网络模型对外来海洋生物名称实体、时间实体、地名实体3类实体上的命名实体识别结果平均准确率达到了90.62%,平均召回率达到了89.50%,平均F1值达到了90.05%,较传统命名实体识别方法均有较大提高。研究表明,本研究中提出的网络模型可以充分提取文本特征,解决了文本的长距离依赖问题,对外来海洋生物领域的命名实体识别具有较好的识别效果。  相似文献   

13.
番茄病害的及时发现与治理有助于提高番茄产量与质量,增加农户经济收益.利用物联网和人工智能可以无损害有效检测番茄病害,该研究提出了一种改进的AT-InceptionV3(Attention-InceptionV3)神经网络番茄叶部病害检测模型,该网络以InceptionV3为主干网络,结合多尺度卷积和注意力机制CBAM(...  相似文献   

14.
基于注意力残差机制的细粒度番茄病害识别   总被引:2,自引:0,他引:2  
【目的】解决温室环境下细粒度番茄病害识别方法不足问题。【方法】以早、晚期5种番茄病害叶片为研究对象,提出一种基于注意力与残差思想相结合的新型卷积神经网络模型ARNet。通过引入多层注意力模块,层次化抽取病害分类信息,解决早期病害部位分散、特征难以提取难题;为避免网络训练出现退化现象,构建残差模块有效融合高低阶特征,同时引入数据扩充技术以防止模型过拟合。【结果】对44 295张早、晚期病害叶片数据集进行模型训练与测试的结果表明,与VGG16等现有模型相比,ARNet具有更好的分类表现,其平均识别准确率达到88.2%,显著高于其他模型。ARNet对早期病害识别准确率明显优于晚期病害,验证了注意力机制在提取细微区域特征上的有效性,且在训练过程中未发生过度抖动的状况。【结论】本文提出的模型具有较强鲁棒性和较高稳定性,在实际应用中可为细粒度番茄病害智能诊断提供参考。  相似文献   

15.
16.
基于Chirplet语图特征和深度学习的鸟类物种识别方法   总被引:1,自引:1,他引:1  
目的深度学习在鸟类物种识别的应用是目前的研究热点,为了进一步提高识别效果,提出一种基于鸟鸣声的Chirplet语图特征和深度卷积神经网络的鸟类物种识别方法。方法引入线性调频小波变换(Chirplet transform,CT)计算鸟鸣声信号的语图,输入深度卷积神经网络VGG16模型中,通过对语图进行分类实现鸟类物种的识别。以北京市松山国家自然保护区实地采集的18种鸟类为研究对象,利用Chirplet变换、短时傅里叶变换(short-time fourier transform,STFT)和梅尔频率倒谱变换(Mel frequency cepstrum transform,MFCT)计算得到3个不同的语图样本集,对比分别采用不同的语图样本集作为输入时鸟类物种识别模型的性能。结果结果表明:Chirplet语图作为输入时,测试集的平均识别准确率(mean average precision,MAP)达到0.9871,相对于其他两种输入,得到了更高的MAP值,而且在训练时达到最大MAP值的迭代次数最小。结论采用不同的语图特征作为输入,直接影响深度学习模型的分类性能。本文计算的Chirplet语图的鸣声区域相比STFT语图和Mel语图更为集中,特征更明显。因此,Chirplet语图更适合于基于VGG16模型的鸟类物种识别,可以得到更高的MAP值和更快的识别效率。   相似文献   

17.
基于分层卷积深度学习系统的植物叶片识别研究   总被引:2,自引:3,他引:2  
深度学习已成为图像识别领域的研究热点。本文以植物叶片图像识别为研究对象,对单一背景和复杂背景图像分别给出了优化预处理方案;设计了一个8层卷积神经网络深度学习系统分别对Pl@antNet叶片库和自扩展的叶片图库中33 293张简单背景和复杂背景叶片图像进行训练和识别,并与传统基于植物叶片多特征的识别方法进行了比较分析。实验证明:本文提供的CNN+SVM和CNN+Softmax分类器识别方法对单一背景叶片图像识别率高达91.11%和90.90%,识别复杂背景叶片图像的识别率也能高达34.38%,取得了较好的识别效果。利用本文实现的分层卷积深度学习识别系统在数据量大而无法做出更多优化的情况下,叶片图像的识别率更高,尤其是针对复杂背景下的叶片图像,取得了极佳的识别效果。   相似文献   

18.
基于深度学习的5种树皮纹理图像识别研究   总被引:1,自引:0,他引:1  
目的针对在树皮图像识别时,现有的算法和识别过程过于复杂的问题,提出了基于深度学习的方法来对不同树种的树皮图像进行识别。方法本文以5种常见树种的树皮纹理图像为例,采用基于卷积神经网络的深度学习方法,将原始图像直接作为输入,通过卷积和池化层对图像的低级、高级特征进行自动提取,解决了手动提取纹理特征的困难和问题;在此基础上,对CNN模型结构进行改进,采用带Maxout的ELU激励函数来代替ReLU函数,解决模型的偏移和零梯度问题;对损失函数进行改进,通过添加规范项来优化结构参数,并使用分段常数衰减法对学习率进行动态调控;最后采用softmax分类器对图像类别进行输出。结果对5个树种的树皮图像共计10 000张图像进行实验,其中每类选取200张图像作为测试集。最终训练准确率达到93.80%,测试集识别准确率为97.70%。另外,为验证本文方法的可行性,与传统人工特征提取法,提取HOG特征、Gabor特征和灰度共生矩阵统计法,训练SVM分类器。通过实验比较,本文方法识别准确率最高。结论本文提出的基于深度学习的树皮纹理图像识别方法是可行的,提高了识别效率和精度,为树种的智能化识别提供新的参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号