首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
炭基复混肥氮钾缓释特性研究   总被引:1,自引:0,他引:1  
为探究生物质炭及其用量对肥料养分的缓释效果,利用实验室圆盘造粒机制备了生物质炭用量为10%、20%、30%的炭基复混肥,采用土柱模拟淋溶法研究了炭基复混肥在土壤中氮、钾淋出率。结果表明:添加生物质炭能够减少肥料氮、钾淋出量,且随着生物质炭用量的增加炭基复混肥氮、钾素累积淋出率逐渐减小。当第10次淋溶时,生物质炭用量为10%、20%、30%炭基复混肥的氮素累积淋出率分别较不添加处理减少了6.03%、12.49%、33.72%,钾素累积淋出率较不添加处理分别减少了5.15%、5.29%、13.58%,且添加30%生物质炭处理显著大于其他处理。用一级动力学方程、Elovich方程和抛物线方程对各处理养分释放曲线拟合,结果显示一级动力学方程拟合效果最好,可用于表征氮、钾素累积淋出率与时间的关系。   相似文献   

2.
The responses of three upland grassland phytocoenoses to three different management treatments were studied in Southern Bohemia. The sites were at an advanced successional stage, with all three being meadows abandoned since World War II: (i) Molinion, (ii) degraded Calthion with dominant Carex brizoides and (iii) plant community with the dominant species Calamagrostis villosa. Three different treatments (cutting, liming and fertilizing) were applied to the three grassland types, and their effects on the diversity, plant cover and biomass production were investigated over a 3‐year period. Analyses showed significant differences between meadow types in time as well as response to treatments. Independent of the treatments, the biomass production and Shannon index increased significantly in all meadows by varying degrees during the investigation period, whereas the cover decreased slightly in the case of the Carex community and the Molinion and remained unchanged in the case of the Calamagrostis community. Changes in the ground cover (as percentage) in response to management treatments varied between the meadow types. Limed and fertilized plots of the Molinion and Calamagrostis communities had higher percentage cover values compared to the control, but the cover of the C. brizoides community was not affected. In contrast, cut plots of the Molinion had slightly reduced cover. The changes in biomass and species diversity showed no significant correlation with the types of treatment used.  相似文献   

3.
To examine whether the critical leaf N/P ratios (of 14, 16) are valid to test nutrient limitation in the context of semi‐arid sandy grasslands, an experiment was conducted on a Keerqin sandy grassland in North‐east China to investigate the responses of plant biomass and nutrient concentrations to fertilization. Plant biomass production and leaf nutrient concentrations were measured after five consecutive years of fertilization with N (20 g N m?2 year?1) and/or P (10 g P2O5 m?2 year?1). Nitrogen fertilization increased the shoot biomass by twofold and consequently the shoot/root ratio, whereas P fertilization had little effect on either shoot biomass or shoot/root ratio. Leaf N/P ratio varied among species with an average of 5·6 in the control, while the mean leaf N/P ratio (7·5) under the N fertilization treatment remained below the threshold of 14. Our results suggest that the critical N/P ratio (14, 16) is not applicable as a test for nutrient limitations in the context of semi‐arid, sandy grassland.  相似文献   

4.
Livestock grazing can be a means to maintain biodiversity in grasslands, but the outcome for vegetation structure and species composition depends on livestock type and grazing regime. This study aims at disentangling the effects of plant functional‐group abundance and livestock type on the above‐ and below‐ground biomass and N allocation in temperate pastures. We investigated the effects of cattle, sheep and mixed stocking on above‐ground biomass (AGB) and belowground biomass (BGB) and plant N pools in a replicated grazing experiment in two pasture community types with different plant functional‐group abundance (diverse vs. grass‐dominated swards). In the six treatments, AGB was reduced up to 80% compared with an ungrazed control. Cattle reduced AGB to a larger extent than sheep in diverse pastures (80 vs 44% reduction) while sheep grazing tended to do so in grass‐dominated pastures (57 vs 46% reduction); mixed stocking led to intermediate values. Grazing reduced AGB more than the N pool in AGB, thus lowering the biomass C/N ratio relative to the ungrazed control. Neither BGB nor the N pool in BGB differed between the grazing treatments and the control plots. We conclude that livestock type and functional‐group abundance are interacting factors that influence plant biomass and N pools in swards of managed temperate pastures. The contrasting biomass removal rates of cattle and sheep could be used to increase the structural heterogeneity and total plant species pool of pastures by keeping different livestock species in neighbouring patches.  相似文献   

5.
采用田间小区试验,以先玉335为材料,设置5个处理,分别为CK(常规尿素+磷酸二铵+硫酸钾)、BF1(生物炭+80%尿素+80%磷酸二铵+80%硫酸钾)、BF2(生物炭+80%尿素+磷酸二铵+硫酸钾)、BF3(生物炭+尿素+80%磷酸二铵+硫酸钾)、BF4(生物炭+尿素+磷酸二铵+80%硫酸钾),玉米开花期、成熟期采集样品,分析不同处理干物质和养分积累转运特征,明确生物炭与化肥减量配施对玉米产量及氮磷钾养分积累转运的影响。结果表明,BF1、BF2、BF3、BF4处理均增加了植株干物质积累量、转运率及对子粒干物质积累贡献率,提高了玉米产量,促进了玉米植株氮磷钾素积累总量。因此,可应用生物炭与化肥减量配施实现玉米节肥增产。本试验条件下,减量20%硫酸钾配施生物炭对玉米产量效果最优。  相似文献   

6.
Little is known about the immediate effect of high nitrogen (N), phosphorus (P) and potassium (K) application rates on sown grasslands cut twice per year. We asked how quickly plant species composition, biomass yield, biomass chemical properties and nutrient balance respond to N, P and K application. An experiment using unfertilized control, P, N, NP and NPK treatments was established on seven‐year‐old cut grassland in the Czech Republic in 2007 and monitored over four years. Annual application rates were 300 kg N ha?1, 80 kg P ha?1 and 200 kg K ha?1. The immediate response of plant species composition to N application was recorded and was found to be different to the response over the four years of the study period. Highly productive grasses (Dactylis glomerata, Festuca arundinacea and Phleum pratense) were promoted by N application in 2008 and then retreated together with legumes (Medicago sativa, Trifolium pratense and Trifolium repens) in all N treatments where the expansion of perennial forbs (Urtica dioica and Rumex obtusifolius) and annual weeds (Galinsoga quadriradiata, Impatiens parviflora, Lamium purpureum and Stellaria media) was recorded. At the end of the experiment, Festuca rubra was the dominant grass in the control and P treatment, and species richness was lowest in all treatments with N application. Mean annual dry‐matter yield over all years was 3.5, 3.9, 5.8, 5.6 and 6.8 t ha?1 in the control, P, N, NP and NPK treatments, respectively. Concentrations of N in the biomass ranged from 20.0 to 28.7 g kg?1 in the P and N treatments; concentrations of P ranged from 3.2 to 3.7 g kg?1 in the N and P treatments; and concentrations of K ranged from 24.1 to 34.0 g kg?1 in the NP and NPK treatments. The N:P, N:K and K:P ratios did not correctly indicate the nutrient limitation of biomass production, which was primarily N‐limited, and K‐limitation was only recorded for high production levels in treatments with N applications. On the basis of the nutrient‐balance approach, the balanced annual application rates were estimated as 140 kg N ha?1, 30 kg P ha?1 and 100 kg K ha?1. We concluded that high N, P and K application rates can very quickly and dramatically change species composition, biomass production and its chemical properties in sown cut grasslands. High N application rates can be detrimental for tall forage grasses and can support the spread of weedy species.  相似文献   

7.
生物炭还田条件下磷肥减施对玉米产量及养分利用的影响   总被引:3,自引:0,他引:3  
通过4年田间定位试验,研究辽宁昌图棕壤区生物炭还田条件下磷肥减施20%对玉米产量及养分利用的影响。结果表明,与常规施肥相比,生物炭还田(3 000 kg/hm~2)后各处理促进玉米增产,最高增产5.5%,生物炭还田配施磷肥减量20%处理的产量表现略有增加的趋势。生物炭还田后各处理均提高了玉米植株N、P和K的养分吸收量,提高玉米植株氮素和磷素回收率,生物炭还田配施常规肥处理可更好促进玉米氮、磷、钾养分吸收,提高玉米氮素回收率,4年综合提高5.3个百分点;生物炭还田配施磷肥减量20%处理可更好提高玉米磷素回收率,提高4.9个百分点。  相似文献   

8.
Subsoil constraints are major limiting factors in crop production in many soils of southern Australia. A field study examined effects of deep incorporation of organic and inorganic amendments in 30–40 cm on soil properties, plant growth and grain yield of wheat (Triticum aestivum var. Ambrook) on a Sodosol with dense sodic subsoil with or without lucerne history in a high rainfall region (long-term average annual rainfall 576 mm) of Victoria. Amendments were applied at a rate of 10–20 t ha−1. Deep ripping alone and deep ripping with gypsum did not significantly affect grain yields. In comparison, application of organic materials doubled biomass production and increased grain yield by 1.7 times. Organic amendment-treated plots produced 60% more grains per area than the untreated control. The crop extracted over 50 mm extra water from below 40 cm soil in organic amendment-treated plots than the untreated control. Nitrogen uptake was almost doubled (403 kg ha−1) in the organic amendment-treated plots than the untreated control (165 kg ha−1). The improved yield with amendments was related to an increase in plant available water in the hostile subsoil, and prolonged greenness of leaves and supply of nitrogen and other nutrients.  相似文献   

9.
Biomass productivity in poor soils is limited by several factors, among which are climatic conditions and nutrients. The most important limiting nutrients in plant productivity are nitrogen and phosphorus, even in regions receiving <200 mm precipitation. In this study, we evaluated the improvement in pasture and soil quality using different fertilization management procedures over 2 years in phosphorus‐deficient soils. Three different fertilizers were used: urban solid waste (USW), ecofertilizer (EF) and calcium superphosphate (SP). The hypothesis that fertilization management significantly improves the quality of the soil and forage for cattle was also tested. Results showed that biomass change depended on the year but not on the treatment. Different percentages of functional groups (graminoids, leguminoids and others) were compared by year and treatment. The results were similar for the three groups. In general, the sampled year was more important than the treatments. Soil composition did show some changes, e.g. higher levels of phosphorus in soils fertilized with USW than in the soils under other treatments. As for plant nutrient composition, control plots revealed lower levels of nutrients for graminoids and leguminoids, while the results were irregular in the case of the other species group. For the fertilized plots, USW and SP revealed better results in graminoids, whereas for leguminoids, EF was more nutrient effective in 2004. In 2003, the three fertilizers led to improvements in soil and forage quality compared with the controls. Given the dependence of the local population on goat produce, we suggest a restoration of degraded native pasture areas using these treatments. In particular, USW increases productivity but has minimal effects on functional group composition and soil nutrient cycles.  相似文献   

10.
The aim of this study was to determine the effects of different long‐term management options on re‐establishment of traditional species‐rich grassland in a Lolio‐Cynosuretum grassland. The experiment was set up in 1987 in a low‐fertilized mown pasture in the Eifel Mountains (Germany). Two and four cuts per year each with three levels of nitrogen fertilizer application were compared to no application of P and K fertilizer. Biomass production increased as a result of N application, whereas crude protein content and digestibility of organic matter improved in the four‐cut treatments. During a 20‐year period, we found a significant shift in dominant grass species without any significant effect on species richness. Lolium perenne and Elytrigia repens were replaced by Holcus lanatus and Alopecurus pratensis, especially in the two‐cut treatments with N application. In the unfertilized plots, several individuals of Platanthera bifolia appeared when swards were cut only twice per year, probably as a result of nutrient depletion together with low cutting frequency. An increase in number of cuts mainly supported plant species well adapted to intensive management, even under low N application and relatively low plant‐available P content in the soil. Therefore, we conclude that cutting frequency was a key driver on plant species composition in this experiment. The re‐establishment of traditional species‐rich grassland from intensively managed Lolio‐Cynosuretum was not achieved within 20 years of cutting management combined with absence of P and K application.  相似文献   

11.
由于干热河谷地区生态环境相当脆弱,为了解元素添加对干热河谷植被群落结构的影响,试验选取了元谋干热河谷地段来研究元素添加对植物群落结构及物种多样性的影响。研究结果表明,添加不同元素后对植物群落结构参数产生了不同影响。不同元素添加后降低了双子叶植物群落多样性,而添加不同元素增加了单子叶植物的多样性,尤其是添加了K元素对单子叶植物群落的Simpson指数、Shannon-Wiener指数、Pielou均匀度、McIntosh指数起到了促进作用,与CK相比分别提高了2.28%、2.41%、2.37%、3.73%。  相似文献   

12.
A 3‐year experiment was conducted in Central Europe to examine the effects of three managements, viz. continuous cattle grazing from April to September, mowing once in July and abandonment of grazing, and two levels of fertilizer application, no fertilizer and 400 kg ha?1 of a NPK fertilizer, on changes in plant species composition and summer biomass of dry matter (DM) in a calcareous mountain grassland containing many plant functional types. Different managements led to changes in species composition due to species‐specific responses. Low creeping and rosette species were associated with grazing, while grasses and tall forbs correlated with mowing and abandonment of grazing, probably because of their ability to outcompete rosette species. There was a negative relationship between the number of species and above‐ground biomass and a positive relationship between number of species and below‐ground biomass, suggesting that these species‐rich communities allocate more to below‐ground organs when not grazed. The application of fertilizer had no effect on species composition but it indirectly increased competitive asymmetry for light and increased the number of plant extinctions. It is concluded that continuation of cattle grazing is an acceptable form of grassland management at the study site and that species and functional group compositions can rapidly change with changing environmental conditions such as abandonment of grazing or application of fertilizer.  相似文献   

13.
Biogas production from grassland biomass harvested during landscape management may help to maintain species‐rich grassland biotopes, but extensive management and late harvests often result in low‐quality biomass. Biogas production from the vegetation of Alopecuretum pratensis, Molinietum caeruleae and Caricetum gracilis, three typical grassland biotopes in north German nature reserves, was investigated in relation to harvest date. In addition, the A. pratensis vegetation was investigated for ensiling and the application of bacterial silage additives. Results indicate that biogas production might be a reasonable utilization pathway for grassland biomass from landscape management if the first cut occurs up to late summer. Methane yields of grassland biomass decreased substantially with later harvest, from up to 309 lN kg?1 organic dry matter (ODM) in May to below 60 lN kg?1 ODM in February, in correlation with increasing crude fibre contents. Caricetum gracilis vegetation was the least suitable feedstock for biogas production. It showed a rapid decline in methane yields with later harvest and 25% lower methane yields compared with other types of grassland vegetation. Application of silage additives is recommended for adequate preservation of grassland biomass from landscape management by ensiling. Addition of homofermentative lactic acid bacteria improved acidification during ensiling if sufficient fermentable sugar was available. The use of inoculant and molasses enhanced methane yields by 3–55%. Additional carbohydrate source is necessary to ensure proper ensilage when grasses are harvested after late autumn.  相似文献   

14.
通过监测传统胶园与全周期种植模式胶园土壤的养分差异,探讨全周期种植方式对胶园土壤养分的影响。结果表明,传统胶园内离树越近的位点,土壤养分含量和微生物量碳越低;除速效磷外,全周期胶园内离树越近的位点,土壤养分含量和微生物量碳越高。总体而言,全周期胶园土壤全氮、无机氮和微生物量碳低于传统胶园,但均没有达到显著差异,而其土壤有机质、速效磷和速效钾含量高于传统胶园,其中速效磷含量达显著差异(P<0.05)。与传统胶园相比,全周期种植模式主要影响土壤养分和微生物量碳的分布特征,其中土壤速效磷和速效钾含量亦相对较高,其他指标变化较小。  相似文献   

15.
A symbiosis between grasses and systemic fungal endophytes exists in both natural and agricultural grassland communities. Our objective was to examine the effects of systemic endophytes on the competitive ability of two agronomically important grass species: meadow fescue [Festuca pratensis (Huds.) syn. Schedonorus pratensis (Huds.) P. Beauv] and tall fescue [Festuca arundinacea (Schreb.) syn. Schedonorus phoenix (Scop.)]. Plants of meadow and tall fescue were grown for 48 days in replacement series of interspecific mixture with a legume (red clover, Trifolium pratense L.) in different nutrient environments in a greenhouse. Neither of the grass species gained endophyte‐promoted competitive advantage over red clover in grass–clover mixtures. Endophyte infection increased the growth of meadow fescue monocultures by 89% compared to endophyte‐free monocultures in high‐nutrient soils, but plant competition or the cost of endophyte infection to the meadow fescue decreased the yield in resource‐limited conditions. On average, endophyte‐infected and endophyte‐free meadow fescues produced 0·15 and 0·17 g, and 0·14 and 0·14 g dry biomass per plant in mixtures with red clover in high‐ and low‐nutrient soils respectively. In contrast to meadow fescue, endophyte‐promoted growth of tall fescue monocultures was not detected. Endophyte‐infected and endophyte‐free tall fescue monocultures produced 0·76 and 0·95 g biomass per pot, respectively, in the high‐nutrient environment. Endophyte infection can increase the performance of the host grass, but the positive effects depend on the host species, the species composition and soil nutrient availability.  相似文献   

16.
Anaerobic digestion of biomass produces biogas for combustion and also provides a residual digestate. Although sometimes regarded as a waste product, the nutrient‐rich chemical composition of digestate makes it a potential organic fertilizer for agriculture. The goal of this study was to evaluate the effectiveness of digestate as a fertilizer on the biomass yield and chemical composition of cocksfoot (Dactylis glomerata L.). In a 5‐year small‐plot field experiment digestate fertilization treatments supplying 90, 180, 270, 360 and 450 kg N ha?1 were compared with untreated plots and plots fertilized with 180 kg N ha?1 of mineral N fertilizer. Swards fertilized with digestate produced higher biomass yield compared with the control. The same rate of nitrogen fertilizer (180 kg N ha?1) supplied as digestate and from mineral fertilizers gave similar results on biomass yield. Herbage in swards fertilized with digestate contained less nitrogen, but the C:N ratio was much more suitable for biogas production. Digestate fertilization resulted in higher concentrations of cellulose and hemicellulose in biomass and lower contents of the inhibitors of anaerobic digestion—sulphur, calcium, magnesium and phosphorus—compared with those of swards receiving mineral fertilizers.  相似文献   

17.
本研究以两个马铃薯品种为试验材料,采用大田试验,设6个处理:对照(未施化肥和生物黑炭)、F(单施常规肥,尿素10 kg/667m2、二铵20 kg/667m2、硫酸钾10 kg/667m2)、B1(2 t/hm2生物黑炭)、B1F(2 t/hm2生物黑炭+常规肥)、B2(4 t/hm2生物黑炭)及B2F(4 t/hm2生物黑炭+常规肥),研究生物黑炭对马铃薯块茎形成期土壤物理性状及速效养分的影响,为马铃薯的栽培管理和生物黑炭的应用提供理论依据。结果表明,低量生物黑炭处理(2 t/hm2)对土壤pH、容重和总孔隙度无显著性影响;高量生物黑炭处理(4 t/hm2)显著增加土壤pH值和有机碳含量,降低土壤容重,增加土壤总孔隙度,降低土壤速效氮、速效磷和速效钾含量。总的来说,生物黑炭改善马铃薯块茎形成期土壤物理性状,影响速效养分含量。  相似文献   

18.
We compared the role of grasses and forbs in managed grassland under nutrient‐poor conditions via the experimental removal of one of these two species groups and an evaluation of the removal effects over a 5‐year chronosequence (beginning 4 years after removal start), focusing on above‐ground biomass and community composition. There was evidence for the complementarity of grasses and forbs, as shown by better relative performance of both groups in the mixture, measured as the proportional deviation of their above‐ground biomass from that predicted using single‐group plots. Relative performance of forbs was better than that of grasses and did not change significantly throughout the experiment. Relative performance of grasses decreased, reaching a minimum value of 0·03, but then increased to 0·71, in parallel with increasing legume proportion in the above‐ground biomass (from 0·9 to 5·1%). The botanical composition of the grass group did not respond to forb removal. Among the forbs, subordinate species sensitive to light competition became more abundant after removal of grasses; the forb species richness increased on average by 1·6 species per plot. Our results show that the composition and diversity of the forb group is affected by the presence of grasses, and the presence of forbs in a grassland community assures higher temporal stability in above‐ground production. Under increasing depletion of soil nutrients, the grasses derive substantial benefits from the presence of legume species and possibly also from the other forb species. The study supports the need for realistic, long‐term experiments to better understand plant community dynamics.  相似文献   

19.
Phosphite has been shown to suppress some diseases in different plant species but disease control in rice has not been investigated. In 2012/13 and 2013/14 potassium phosphite was sprayed at 1775 g ha−1 and 3550 g ha−1 in field plots of rice in Uruguay to determine if phosphite alone or in combination with label rates of a mixed strobilurin and triazole fungicide could be used to effectively control stem rot and aggregate sheath spot in irrigated rice. Six treatments consisting of different combinations of potassium phosphite alone or with a fungicide and an unsprayed control were assayed in one application at late-boot to early-heading. Phosphite alone in single and double rate slightly reduced severity and incidence of stem rot and produced a small yield increase over the unsprayed control. Fungicide at a 50% label rate with phosphite reduced stem rot severity and incidence to a similar level as the fungicide alone applied at the label rate. Disease severity was reduced by approximately 25% and incidence by 17–20% when compared with untreated control. Yield increase was 5% for both treatments over the unsprayed control. Fungicide combined with phosphite at single and double rates reduced stem rot severity by 40–45% and incidence by 34–38% when compared with untreated control, with yield increased by 10% over the unsprayed control and 5% over plots treated with a fungicide. These results indicate that a single application of potassium phosphite combined with fungicide can be used efficiently to manage of rice stem diseases.  相似文献   

20.
Although the process of reforestation of grassland has been widely studied in Europe, little is known about the effect of deforestation on grassland development. Thus, the specific objective of this study was to evaluate early changes in plant species composition, functional group, yield and biomass quality after deforestation of long‐term abandoned pastures. The experiment was established immediately after deforestation on sparse herbaceous vegetation (mean initial cover 27%) with the following treatments: grazing management only (G0), cutting and grazing aftermath (CG), grazing after seeding of grassland mixture (GS), grazing after a burning treatment in which branches were burned after deforestation (GB) and unmanaged control (U). Very rapid recovery of bare ground by germination and/or sprouting of grassland species was similar under all types of grazing management. Total plant species richness increased in all managed treatments except GB. Similarities according to redundancy analyses in plant species composition were found among G0, CG and GB treatments, especially for forbs with correlated rosette or creeping growth. The woody species, tall grasses and tall forbs had higher abundance in the U treatment. The restoration of grassland following deforestation of formerly reforested grassland area by grazing management was a relatively fast process, and swards were created after 3 years. The highest biomass yield was observed under treatments GS and GB. Forage quality of all managed treatments was sufficient for the demands of beef cattle grazing. However, for subsequent grassland preservation, some type of grazing management is necessary to prevent reforestation, which can occur immediately after deforestation in unmanaged places.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号