首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As global warming becomes more pronounced, climate change and human activities are leading to frequent peat fire incidents. Fire plays an important role in the environmental distribution of trace metals in peat soils. In the current study, we collected peat soils from six peatlands of the Great Khingan Mountains in Northeast China, where wildfires have often occurred in recent decades. To investigate the transformation of trace metals in peat soils by fire, burning experiments at 250°C (light) or 600°C (severe) and under aerobic (AE, flaming) and anaerobic (AN, smouldering) conditions (AE250, AE600, AN250, AN600) were carried out in the laboratory to investigate the effect of different burning intensities on the distribution of Cu, As, Pb, and Cd in peat soils. The European Community Bureau of Reference (BCR) sequential extraction method for metal fractions was applied for partitioning four fractions (exchangeable, reducible, oxidizable, and residual). The results showed that AE600 significantly decreased the percentages of oxidizable Cu, As, Cd and Pb (Cuoxi, Asoxi Cdoxi and Pboxi) compared with those of the original samples, e.g., Cuoxi decreased from 68.84% ± 12.76% to 15.82% ± 8.02% in peat under moss, which might result from organic matter decrease. Under AN250 conditions, the exchangeable As (Asexc) and Pb (Pbexc) significantly increased by more than twice. Different burning intensities significantly changed the various fractions of Cu, e.g., more than 20% Cuoxi transferred to exchangeable and reducible fractions as the temperature increased. Most of the available fractions of As transformed to residual As after burning. Our study suggests that the AE600 treatment increased the ecotoxicity and bioavailability of Cu, Pb and Cd in peat soils, while AN250 burning decreased the potential ecotoxicity of Cu, As, and Pb. Compared with lower temperature flaming burning (AE250), the ecotoxicity and bioavailability of Cu and Pb were greater in high temperature (AE600) conditions. Smouldering fires at both temperatures (AN250 and AN600) maintained a high potential ecotoxicity and bioavailability of Cu and Pb in peat soils.  相似文献   

3.
It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1–3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8–9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.  相似文献   

4.
Drainage and intensive use of fens lead to alterations in the physical characteristics of peat soils. This was demonstrated using parameters of water balance (available water capacity) and the evaluated unsaturated hydraulic conductivity. Deriving the distribution of the pore size from the water retention curve was flawed because of shrinkage due to drainage, especially at high soil water potentials. These errors became greater as the peat was less influenced by soil‐genetic processes. The water retention curves (desorption) evaluated in the field and the laboratory satisfactorily corresponded. However, the wetting‐ and drainage‐curves obtained in the field differed up to 30 vol.‐% water content at same soil water potentials. These differences were largely due to a wetting inhibition.  相似文献   

5.
Mesophilic and thermotolerant actinomycetes were identified in strongly heated desert-steppe soils of Mongolia, mountainous meadow soils of the Central Caucasus, and cyanobacterial films on volcanic ash near hot springs of Kamchatka. Thermotolerant actinomycetes in these soil objects were more abundant and had a greater taxonomic diversity in comparison with mesophilic actinomycetes. Thermotolerant Streptomyces were present in all the objects, except for sample 117 from the desert-steppe soil and the cyanobacterial film on volcanic ash. Thermotolerant actinomycetes from the Micromonospora and Actinomadura genera predominated in the desert-steppe soil; representatives of the Micromonospora genus predominated in the cyanobacterial film on volcanic ash, and representatives of the Microtetraspora genus predominated in the samples of geyserite near hot springs of Kamchatka.  相似文献   

6.
ABSTRACT

Redox cycle of iron (Fe) is the central process in the biogeochemistry of paddy field soil. Although Fe(II)-oxidizing process is mediated by both abiotic and biotic reactions, microorganisms involved in the process have not been well studied in paddy field soil. The present study investigated the community structure of microaerophilic Fe(II)-oxidizing bacteria (FeOB) in the family Gallionellaceae in the plow layer of paddy fields located in the central (Anjo) and northeastern (Omagari) Japan since the members in the family are the typical FeOB in circumneutral freshwater environments and possibly have the significant role for Fe(II) oxidation in paddy field soils. A primer set targeting 16S rRNA gene of Gallionella-related FeOB was newly designed for the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR (qPCR) analyses. DGGE analysis showed significant differences in the band patterns between the field sites. Besides, minor differences were observed in the patterns between the soil depths (0–1 cm and below 1 cm) in the Anjo field, while the patterns were relatively stable in the Omagari field during the annual rice cultivation practices. In total 54 bands were sequenced and clustered into 20 operational taxonomic units (OTUs) on the basis of the 97% similarity. Eighteen out of twenty OTUs (50 of 54 bands) were affiliated within the FeOB cluster of Gallionellaceae, some of which were clustered with known microaerophilic FeOB, Ferrigenium kumadai, Ferriphaselus amnicola, ‘Sideroxydans lithotrophicus’ and ‘S. paludicola’. The number of the 16S rRNA gene copies was 105–107 and 106–108 copies g?1 dried soil in the two paddy fields and negatively correlated to the contents of acetate-extractable Fe(II) in the soils during the rice cultivation period. These results suggested inhabitance of considerable number of diverse Gallionella-related FeOB and their potential involvement in the Fe(II)-oxidizing process of soil, especially during the rice cultivation period in the paddy field soils.  相似文献   

7.
The adsorption of carbendazim by peat and montmorillonite was studied as a function of the exchangeable cations and temperature. The adsorption on soils was also studied. The kinetics of carbendazim adsorption on peat showed that adsorption equilibrium was reached within 1 h. The order of adsorption of carbendazim on peat was as follows: H+-peat > Cu2+-peat > Co2+-peat > Mg2+-peat > K+-peat, and the thermodynamic parameters appeared to suggest an adsorption mechanism involving hydrogen bonds, although in the H+, Cu2+ and Co2+ samples a protonation process and adsorption of the protonated species were also likely. The kinetics of carbendazim adsorption on montmorillonite (mont.) showed that equilibrium was reached within 1 h. The order of adsorption was: H+-mont. > Cu2+-mont. > Co2+-mont. > Ca2+-mont., the adsorption on the H+ and Cu2+ samples being much greater than that on the other samples. For the H+ and Cu2+ samples, the thermodynamic parameters appeared to suggest a double mechanism: physical adsorption, and protonation and adsorption by ion exchange. The most probable mechanism for the adsorption of carbendazim on the Co2+ and Ca2+ samples was physical bonding. The capacity for adsorption of this fungicide on soil was dependent on the organic matter, nitrogen and clay content, as well as on the cation exchange capacity. No significant correlation was found with pH, C/N ratio or free iron content.  相似文献   

8.
Dicyandiamide sorption-desorption behavoir on soils and peat humus   总被引:3,自引:0,他引:3  
The sorption-desorption behavior of dicyandiamide (DCD) is an important chemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCD sorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organic matter-removed and peat humus using the batch-equilibration procedure, and identified soil properties that influenced DCD sorption. The sorption on peat humus was higher than that on the phaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed, indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathic property the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased from about 2 to 5, but a further increase in pH led to a rise in DCD sorption.The DCD desorption hysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01 mol L^-1 CaCl2 as the background electrolyte, suggesting that the hydrophobic domains of organic matter may play an important role in DCD sorption.  相似文献   

9.
A simple model to predict soil water components and the CO2 release for peat soils is presented. It can be used to determine plant water uptake and the CO2 release as a result of peat mineralization for different types of peat soils, various climate conditions, and groundwater levels. The model considers the thickness of the root zone, its hydraulic characteristics (pF, Ku), the groundwater depth and a soil‐specific function to predict the CO2 release as a result of peat mineralization. The latter is a mathematical function considering soil temperature and soil matric potential. It is based on measurements from soil cores at varying temperatures and soil water contents using a respiricond equipment. Data was analyzed using nonlinear multiple regression analysis. As a result, CO2 release equations were gained and incorporated into a soil water simulation model. Groundwater lysimeter measurements were used for model calibration of soil water components, CO2 release was adapted according long‐term lysimeter data of Mundel (1976). Peat soils have a negative water balance for groundwater depth conditions up to 80—100 cm below surface. Results demonstrate the necessity of a high soil water content i.e. shallow groundwater to avoid peat mineralization and soil degradation. CO2 losses increase with the thickness of the rooted soil zone and decreases with the degree of soil degradation. Especially the combination of deep groundwater level and high water balance deficits during the vegetation period leads to tremendous CO2 losses.  相似文献   

10.
Actinomycetes adapted to low-temperature conditions are present in the cold soils of the tundra and northern taiga in quantities comparable to mesophylic forms and dominate in the soil actinomycete complex. Actinomycetes isolated from cold soils were identified as Streptomyces. Most actinomycetes relate to psychrotolerant forms according to habitation temperature. Two of them are conditionally psychrophilic. Specific properties of the investigated populations were identified by multirespirometrical testing.  相似文献   

11.
X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.  相似文献   

12.
The role of vegetation and chemical factors in the development of the primary pedogenesis and evolution of pyrogenic formations resulting from fires on drained peat soils was studied. Over four years after the fire, a shallow (1 cm) humus horizon is formed on the surface of the ashy horizon of the pyrogenic formations. For six years, its thickness increases up to 3–4 cm. The dynamics and productivity of the plant cover on the pyrogenic formations were investigated. The dominant plant species were restricted to certain pyrogenic formations. The formation of stable phytocenoses and chemical transformation of substrates are the factors governing the primary pedogenesis on pyrogenic substrates. Four stages in the evolution of the pyrogenic formations were revealed. At the fourth stage, some features appeared that permit us to recognize the development of soddy soils on the pyrogenic substrates (i.e., soddy pyrogenic-mucky, soddy pyrogenic-sandy soils, etc.).  相似文献   

13.
Abstract

Methods used to estimate the CO2 emission from soil commonly measure the total CO2 flux. To be able to quantify the net CO2 emission from cultivated peat soils there is a need to distinguish between soil organic matter-derived CO2 respiration and plant-derived respiration. In this investigation we used the root exclusion method to separate the plant-derived respiration from total CO2 emission. The plant-derived contribution was estimated to be between 27 and 63% of total CO2 emission depending on soil type and season. We also found a relationship between soil temperature, biomass growth and CO2 efflux, which can be used to estimate plant-derived respiration. Due to the priming effect the root exclusion method is less reliable late in the season.  相似文献   

14.
The shrinkage of the peat soils that accompanies the soil moisture changes is an important feature of such soils and has strong influence on their physical attributes and soil water management. The relationships between soil moisture and volume are often described using shrinkage characteristic curves by relating void ratio (volume of voids per unit volume of solids) to moisture ratio (volume of water per volume of solids). For conversion of soil volume changes into cracks volume and subsidence, a dimensionless shrinkage geometry factor is used. The paper presents results of volumetric shrinkage behavior and the geometry factor at various loads in sedge and alder peat soils. The measurements were conducted on undisturbed soil samples without applying a load and with loads corresponding to field overburden. The shape of the shrinkage characteristics of such soils were completely different from those of clay soils. The application of loads did not significantly influence the shrinkage characteristics curve. The applied load strongly influenced on relationship between shrinkage geometry factor and the moisture ratio, showing higher values of subsidence and lower values of crack volume in comparison with unloaded conditions.  相似文献   

15.
It has been revealed that in organic horizons and plants of the tundra and taiga ecosystems under low temperatures, actinomycetal complexes form. The population density of psychrotolerant actinomycetes in organic horizons and plants reaches tens and hundreds of thousands CFU/g of substrate or soil, and decreases in the sequence litters > plants > soils > undecomposed plant remains > moss growths. The mycelium length of psychrotolerant actinomycetes reaches 220 m/g of substrate. Application of the FISH method has demonstrated that metabolically active psychrotolerant bacteria of the phylum Actinobacteria constitute 30% of all metabolically active psychrotolerant representatives of the Bacterià domain of the prokaryotic microbial community of soils and plants. Psychrotolerant actinomycetes in tundra and taiga ecosystems possess antimicrobial properties.  相似文献   

16.
Summary Melanogenic actinomycetes were isolated from cerrado soils. Starch agar with a neutral pH was the best medium for selecting pigment-producing colonies. A pigmentation screening test selected 52% of these as possible melanin producers. Tests on liquid (organic and inorganic) and solid (peptone and tyrosine) media, and enzymatic tests, confirmed about 90% as melanin producers, 68% as dihydroxyphenylalanine (DOPA)-melanin and 32% as possible other kinds of melanin producers. Melanin production occurred mostly with an organic N, or an inorganic N with an additional organic N source. An exception was observed with three strains, which were able to produce melanins with an entirely inorganic N source in the medium. Instability of melanin production was a common feature in many strains. Further characterization of melanins produced by actinomycetes compared with soil humic acids may clarify the possible role of melanogenic actinomycetes in soil organic matter formation.  相似文献   

17.
The carbon chemistry of 10 profiles of peat soil has been described in detail using 13C nuclear magnetic resonance (NMR) spectroscopy. The changes with depth in the allocation of signal to different carbon functional groups were consistent with an increase in the extent of decomposition (EOD) of the organic material with depth. This increase in EOD with depth is typical of peat soils. Incubation experiments were carried out on peats spanning the range of EODs encountered, to investigate the effect upon mineralization of substrate quality (as defined by 13C NMR spectroscopy), water content and particle size. The confounding factors of depth, water content, bulk density, aeration and carbon content were eliminated by incubating ground peat material in a sand matrix. The size of the mineralizable carbon pool and the rate of carbon mineralization were both significantly affected by substrate quality, water content and particle size. Substrate quality had the greatest effect upon the size of the mineralizable carbon pool: as substrate quality decreased, so too did the size of the mineralizable carbon pool. Water content had the greatest effect upon the rate of carbon mineralization, which increased and then decreased as water content increased, with a maximum rate constant at a volumetric water content of 0.37 cm3 cm?3.  相似文献   

18.
The organic matter of five low-moor peat soils and one eutrophic raised-bog peat soil was chemically characterized by C fractionation and ion-exchange chromatography of amino acids and carbohydrates. C fractions were related to potential denitrification, Dpot, as a measure of microbial activity and C availability, determined by the acetylene inhibition technique. Chemical and physical properties vary distinctively between different kinds of peat, and show increasing C/N ratio and decreasing bulk density and ash content within the profile. Generally, the carbon composition reflects the geobotanical origin of the peat. In most samples more than 65% of organic C consists of non-hydrolysable C. Readily hydrolysable neutral sugar C represents up to about 12% of organic C, usually decreasing with depth. The recalcitrant fraction of neutral sugar C is much smaller (1 to 4.2% of organic C) and does not vary with depth. The content of readily hydrolysable glucose exhibits a strong profile differentiation that decreases with depth, whereas the higher contents of recalcitrant glucose carbon (12/0.5 M H2SO4) in the lower peat horizons reflect their cellulose character. Regression analysis between Dpot and single C components explains up to 51.5% of the variability. Combining fractions which point to C availability (readily hydrolysable glucose) and microbial metabolism (amino acids), it is possible to estimate Dpot with a certainty of more than 80%.  相似文献   

19.
It was found that the actinomycetal complex of a cultivated low-moor peat soil is characterized by a high population density and diversity of actinomycetes; representatives of eleven genera were isolated from this soil: Streptomyces, Micromonospora, Actinomadura, Saccharopolyspora, Microbispora, Microtetraspora, Streptosporangium, Nocardioides, Saccharomonospora, Kibdelosporangium, and Thermomonospora. Some genera were isolated from the soil under all the studied levels of soil moisture. The so-called rare (rarely occurring) genera (Saccharomonospora, Kibdelosporangium, and Thermomonospora) were isolated upon the low level of soil moisture, which ensured an absence of competition from the more abundant actinomycetes. Spores of all the studied actinomycetes could germinate under the low moisture level (a w = 0.67). The level of moisture a w = 0.98 was found to be optimal for the development of the actinomycetes. The complete cycle of the development of all the actinomycetes up to spore formation occurring was only observed under the high moisture level (a w = 0.98).  相似文献   

20.
 Nine actinomycete melanins synthesized under various culture conditions, eight of them by actinomycete samples isolated from Brazilian topsoils under savanna (cerrado) vegetation and one from an ATCC sample, were subjected to a two-step hydrolysis procedure and the sugars released qualitatively and quantitatively determined by capillary gas-liquid chromatography (GLC). Humic acids (HAs) extracted from these soils, analysed previously, were used for comparison. The neutral sugars glucose, galactose, mannose, xylose, arabinose, ribose, rhamnose and fucose and the alcohol sugar inositol were present in varying amounts in most of the melanins analysed. The same sugars were present in the HAs used for comparison, except for ribose. Some qualitative and quantitative differences observed in the two types of macromolecules would be expected, considering their origins. The results indicate that the actinomycete melanins have a qualitative sugar distribution pattern similar to that of the HAs from Brazilian tropical soils and of HAs reported for soils from other climatic regions. The possible participation of actinomycete melanins in the formation of soil humic substances is discussed. Received: 4 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号