首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Poor crop establishment, due to poor land preparation methods and inadequate soil moisture, continues to be a major constraint to crop production for smallholder farmers in the semi-arid tropics. On-farm seed priming (soaking seed in water) has been offered as a solution to this problem, but the ways in which this technology interacts with soil conditions are not well understood. The interactions between seed priming and soil physical conditions on cotton (Gossypium hirsutum L.) and maize (Zea mays L.) emergence and seedling growth were determined in laboratory pot experiments. The treatments included seed treatment (primed and non-primed), initial soil matric potential (−10, −50, −100, −200 and −1500 kPa) and aggregate size (<1, 1–2, 2–4.75 and 4.75–16 mm). Non-sieved soil was used as a control. The soil used (a Chromic Cambisol) was collected from Save Valley Experiment Station in the southeastern lowveld of Zimbabwe. The pots of soil were allowed to dry out after planting, to simulate a deteriorating seedbed. Emergence was subsequently monitored, and plant growth measured 8 days after planting. Final percent emergence and seedling growth decreased with initial matric potential but increased with priming in both crops. Large aggregate sizes generally had an adverse effect on emergence and growth. The data are consistent with the hypothesis that on-farm seed priming can partly compensate for the negative effects of low soil matric potential and large aggregate sizes on crop establishment.  相似文献   

2.
玉米生育期的海拔效应研究   总被引:4,自引:0,他引:4  
为使高海拔地区的玉米生产布局和品种类型利用更加合理,采用作物生态学的田间试验方法,于2006~2007年间,在甘肃省和云南省各设5个试验点,研究了北、南异地不同玉米品种在不同海拔高度的生态效应.结果表明,在播期大体相同的条件下,玉米拔节期、抽雄期、成熟期随海拔的升高而相应延迟,即播种~拔节、拔节~抽雄、抽雄~成熟的"三段生长"时间相应延长.反映生育期长短的出苗~成熟天数与海拔之间呈0.01水平的正相关.本试验条件下,海拔每升降100 m,参试玉米品种的生育期延长或缩短4~5 d,株高和穗上叶数呈随海拔升高而降低趋势.  相似文献   

3.
The effects of deep tillage, straw mulching, and irrigation on corn (Zea mays L.) yield on a loamy sand (mixed, hyperthermic, Typic Ustipsamment) were studied for early (high evaporativity) and normally sown (relatively low evaporativity) crop for 3 years in a semi-arid sub-tropical monsoon region at Punjab Agricultural University, Ludhiana, India. Treatments included all combinations of two tillage systems (conventional tillage — harrowing the soil to a 10-cm depth; deep tillage — chiselling 40 cm deep, 35–40 cm apart), two irrigation regimes (75 mm irrigation when net open pan evaporation accumulated to 75 mm or 50 mm), and two straw mulch rates (0 and 6 Mg ha−1).

Deep tillage significantly reduced soil strength (cone index) and caused deeper and denser rooting than conventional tillage, more so in the dry season and with the infrequent irrigation regime than in the wet season and frequent irrigation regime. Mulch also improved rooting by influencing the hydrothermal regime of the soil. Better rooting with deep tillage and/or mulch helped the crop to extract stored soil water more efficiently, which was reflected in a favourable plant water status (indicated by canopy temperature). Averaged across years, irrigation, and mulch, deep tillage increased grain yield by 1.6 Mg ha−1 for the early season and 0.5 Mg ha−1 for the normal season crop over the yield of 2.0 Mg ha−1 achieved with conventional tillage regardless of season. Yield increase with mulching was also greater for the early season crop. Crop response to deep tillage and mulching was generally linked to the interplay between water supply (rain + irrigation) and demand (seasonal evaporativity) during the growing season. Increasing irrigation frequency increased crop yield when evaporativity exceeded rainfall early in the growing season. The results show that higher corn yields on coarse-textured soils in these regions may be achieved by advancing the seeding time and by using a proper combination of deep tillage, mulch, and irrigation.  相似文献   


4.
Previous studies on pollen dispersal helped to identify objective parameters of coexistence of genetically modified (GM) and conventional maize. Nevertheless, data on the quantity and dynamics of airborne pollen flow (APF) in air layers above and around a maize field, and its contribution to the rate of cross-pollination, are still missing. In 2004 and 2005, 690 pollen traps were arranged at different locations relative to three maize fields: in the maize fields itself, and in fields adjacent to the maize fields, consisting either of grassland or wheat stubble. The traps were positioned along strings over maize, wheat stubble and grassland at two fixed heights relative to the maize plants: immediately above (0 m) and 1 m above tassel height (1 m). Whereas the traps positioned at 0 m over maize indicated the amount of pollen shed, those located at 1 m above tassel height indicated airborne pollen flow to this upper air layer. The amount of pollen at 1 m relative to the amount of pollen just above the tassel, ranged from 4% to 40%; very high values correlated with strong winds during flowering. These winds were not strong enough to transport significant amounts of pollen farther than a few meters away from the pollen source because above both adjacent grass and wheat stubble environments, the amount of pollen at 1 m above tassel height was similarly low. In one single experiment and at 0 m above tassel height, a significantly higher amount of pollen was found over wheat stubble than over grassland. During this experiment, high temperatures and low wind speeds coincided with pollen shed, which may have favored the generation of thermals over hot surfaces, capable of lifting pollen grains.  相似文献   

5.
为了研究黄淮海平原不同秸秆还田方式和施氮类型对夏玉米农田生态系统土壤呼吸的影响,于2010年6—10月,采用LI-COR-6400-09土壤气室连接红外线气体分析仪(IRGA)对玉米农田行间掩埋秸秆区的土壤呼吸作用进行了连续测定。结果表明,常规施肥下,玉米生育期内秸秆行间掩埋处理(ISFR)的平均土壤呼吸速率显著高于秸秆移除(NSFR)和秸秆覆盖(SFR)处理(P<0.05)。秸秆行间掩埋配合施用化学氮肥处理中,配施50.4 kg(N).hm 2处理(ISF3)的平均土壤呼吸速率为(178.85±46.60)mg(C).m 2.h 1,显著高于配施33.6 kg(N).hm 2处理(ISF2)的(124.11±23.18)mg(C).m 2.h 1(P<0.05)。秸秆行间掩埋配合施用鸡粪处理中,鸡粪施用量为33.6kg(N).hm 2(ISOM2)处理的平均土壤呼吸速率为(208.08±31.54)mg(C).m 2.h 1,施用16.8 kg(N).hm 2(ISOM1)和50.4 kg(N).hm 2(ISOM3)处理的为(135.07±21.97)mg(C).m 2.h 1、(171.43±43.31)mg(C).m 2.h 1,相比ISOM2处理,ISOM1和ISOM3处理的平均土壤呼吸速率降低了35.09%和17.61%。ISOM2处理玉米季CO2排放累积量为499.39 g(C).m 2,显著高于ISF2处理的297.86 g(C).m 2。秸秆行间掩埋配合施用化学氮肥对土壤呼吸速率的影响小于配合施用鸡粪的影响,配合施用16%总氮的鸡粪,即33.6 kg(N).hm 2时C/N比最适宜土壤微生物的代谢活动。  相似文献   

6.
长期定位施肥对夏玉米光合特性及产量的影响研究   总被引:7,自引:0,他引:7  
在长期定位试验基础上,采用以化肥为主处理、玉米秸秆为副处理的二因素裂区设计,通过对夏玉米叶面积、叶面积指数、功能叶叶绿素含量等光合特性及产量构成等的研究,探讨了秸秆与氮磷化肥配施对夏玉米光合特性及产量的影响.研究结果表明:长期施用秸秆对夏玉米增产有积极作用,但产量的增加主要靠化肥的投入,秸秆和化肥配施能更大幅度地增加夏玉米产量.从植株光合特性看,随氮磷化肥用量的增加,夏玉米叶面积和叶面积指数增大,到灌浆后期叶面积指数维持在3.5左右.长期不施肥和仅施秸秆处理玉米功能叶叶绿素含量低.长期施用秸秆促进了玉米叶面积的增加,其增产作用表现在穗粒数的增加上.化肥和秸秆配施在促进玉米生长的同时还能延缓叶片衰老,更大程度地增加穗粒数,提高千粒重,进而增加夏玉米产量.秸秆还田和氮磷化肥配施是该区较好的施肥模式.  相似文献   

7.
Rapid wetting of irrigated soils often leads to slaking and slumping, and on drying a surface crust and hard-set conditions may occur. This results in reduced crop emergence unless the surface is kept moist. The effect of aggregate size and water content on the emergence of soybean and maize from an Entic chromustert (heavy cracking clay) was determined using pots of sieved aggregates with size ranges less than 1, 1–2, 2–5 and 5–15 mm at soil water contents of 15, 20 and 25 g (100 g)−1. Unsieved soil was used as a control. Greatest emergence tended to occur from fine (1–2 mm) seedbeds compared with coarse (5–15 mm) seedbeds for both crops. A covered treatment, simulating a stubble mulch, resulted in greater emergence than an uncovered treatment for all water contents and aggregate sizes. Earlier emergence occurred from finer (less than 1 mm and 1–2 mm) seedbeds than from coarse (5–15 mm) seedbeds, and at the greatest water content used. Soil strength, measured with a shear vane, decreased with increasing water content and tended to be less on fine (1–2 mm) seedbeds compared with very fine (less than 1 mm) or coarse (5–15 mm) seedbeds. It is recommended that, for good emergence from this Entic chromustert, seedbeds be brought to a water content of 25 g (100 g)−1 by capillary wetting to prevent hardsetting and consist of 1–2 or 2–5 mm aggregates for soybean and maize, respectively, and have a stubble mulch on the surface. This corresponds to an equivalent depth of water of 15 mm and 9 mm for soybean and maize, respectively, in the top 50 mm of the profile.  相似文献   

8.
Many biological processes vary in a curvilinear manner, reaching a maximum rate at an optimum water content. Optimum conditions commonly extend across a range in water contents, and providing there are no soil-related limitations to biological processes, this range can be referred to as the non-limiting water range (NLWR) of a soil. The rate of a biological process would be expected to be similar in soils with different structure when the water content is in the NLWR and soils are under similar environmental conditions. This range potentially is a useful characteristic to describe the quality of soil structures with respect to a biological process—the larger the range the higher the quality. The distinction between optimum and NLWR has received little attention. The objective of this study was to determine if gas exchange rates, biomass accumulation in shoots and roots, root morphology and rate of development of maize (Zea mays L.) vary among soils under optimum soil water contents. Plants were grown to the 12-leaf stage under controlled environment conditions in four soils of different texture, packed to two levels of compaction with two rates of N addition and maintained at three different water contents. The optimum water content, for processes involving both shoots and roots, bracketed an air content of 0.15 for the different soils. The magnitude of the plant responses at optimum water content varied among soils and with relative compaction. Plant responses were largest in the Conestogo (loam soil) and smallest in soils with the highest clay contents. The magnitude of several responses decreased with increasing compaction. In the process of determining the NLWR, it is not appropriate to assume that either shoot or root characteristics are similar in soils of different structure when the water content of each soil is within a range that is optimum for that soil. The largest root and shoot growth that can be achieved at optimum water content across a range of soil conditions must be determined and NLWR determined on soils exhibiting these growth rates. Soils at their optimum water content with root and shoot growth that are less than the largest values imply the existence of soil-related limitations and therefore, by definition, have a value of zero for NLWR.  相似文献   

9.
Soil compaction is of great importance, due to its adverse effects on plant growth and the environment. Mechanical methods to control soil compaction may not be economically and environmentally friendly. Hence, we designed experiments to test the hypothesis that use of plant symbiotic fungi, arbuscular mycorrhiza (AM) may alleviate the stressful effects of soil compaction on corn (Zea mays L.) growth through enhancing nutrient uptake. AM continuously interact with other soil microorganisms and its original diversity may also be important in determining the ability of the fungi to cope with the stresses. Hence, the objectives were: (1) to determine the effects of soil compaction on corn nutrient uptake in unsterilized (S1) and sterilized (S2) soils, and (2) to determine if inoculation of corn with different species of AM with different origins can enhance corn nutrient uptake in a compacted soil. Using 2 kg weights, soils (from the field topsoil) of 10 kg pots were compacted at three and four levels (C1, C2, C3 and C4) (C1 = non-compacted control) in the first and second experiment, respectively. Corn (cv. 704) seeds were planted in each pot and were inoculated with different AM treatments including control (M1), Iranian Glomus mosseae (M2), Iranian G. etunicatum (M3), and Canadian G. mosseae, received from GINCO (Glomales In Vitro Collection), Canada (M4). Corn leaf nutrient uptake of N, P, K, Fe, Mn, Zn and Cu were determined. Higher levels of compaction reduced corn nutrient uptake, however different species of AM and soil sterilization significantly increased it. The highest increase in nutrient uptake was related to P (60%) and Fe (58%) due to treatment M4S2C3. Although it seems that M3 and M4 may be the most effective species on corn nutrient uptake in a compacted soil, M2 increased nutrient uptake under conditions (C3 and C4 in unsterilized soil) where the other species did not. Through increasing nutrient uptake AM can alleviate the stressful effects of soil compaction on corn growth.  相似文献   

10.
淹涝胁迫和氮形态对苗期玉米糖、氮代谢底物量的影响   总被引:1,自引:0,他引:1  
采用砂培培养方法,比较研究淹水和不同氮形态(铵态氮、硝态氮以及铵态氮︰硝态氮为1︰1)对苗期玉米根、茎鞘和叶的糖、氮代谢底物——可溶性糖、还原糖、硝态氮和游离氨基酸等物质含量的影响。结果表明,当淹涝胁迫持续7 d时,在非淹涝胁迫条件下,铵态氮处理的根、茎鞘和叶的可溶性糖和游离氨基酸含量均显著高于硝态氮处理(P<0.05);在淹涝胁迫条件下,硝态氮处理的根、茎鞘和叶的生物量干重显著低于铵态氮处理(P<0.05),其根和叶的生物量干重也显著低于铵态氮、硝态氮混合处理(P<0.05)。与非淹涝条件相比,在淹涝胁迫条件下,硝态氮处理的根系和叶的硝态氮含量显著降低(P<0.05),降低幅度分别高达62.6%和30.0%;此外,与非淹涝条件相比,在淹涝胁迫条件下,铵态氮处理的根的可溶性糖、还原糖以及游离氨基酸含量,茎鞘的可溶性糖和还原糖含量以及叶的可溶性糖和游离氨基酸含量均显著升高(P<0.05),而硝态氮处理仅根、茎鞘和叶的还原糖含量以及叶的游离氨基酸含量显著升高(P<0.05)。因此,在本试验条件下,由于糖、氮代谢底物含量充足,铵态氮处理的苗期玉米具有相对较强的耐淹涝胁迫能力。  相似文献   

11.
麦茬处理方式对机播夏玉米的生态生理效应   总被引:18,自引:1,他引:18  
为探求适合黄淮海平原机播夏玉米的最佳麦茬处理方式,采用大田试验,研究了麦茬处理方式(平茬、立茬、除茬)对机播夏玉米的生态生理效应.结果表明,平茬有利于提高土壤含水率、平衡和改善耕层土壤温度,较好地满足玉米生长对土壤温度和水分的需求.3展叶时,玉米叶面积、干物质重等指标都以除茬处理最好;6展叶时,平茬处理玉米的株高、单株干重、叶面积、光合速率均表现最优,产量也最高.所以平茬处理为机播夏玉米的生长提供了较好的生态条件,促进了夏玉米的生长发育和产量的提高,有很大的推广价值.  相似文献   

12.
不同覆膜栽培方式对玉米干物质积累及产量的影响   总被引:12,自引:1,他引:12  
为探讨地膜覆盖栽培方式的增产机理,完善地膜覆盖玉米栽培技术,采用田间试验法,以露地平播为对照,比较了全膜双垄沟播、半膜双垄沟播、半膜平铺、膜侧沟播等4种栽培方式对玉米叶面积、光合势、干物质积累、穗部性状、产量及其构成因子、水分利用效率的影响,并进行了成本和效益分析。结果表明:全膜或半膜双垄沟播显著增加了各个生育时期玉米的叶面积,半膜平铺和膜侧沟播作用不大;全膜和半膜双垄沟播及膜侧沟播显著提高了玉米的光合势,半膜平铺对生长前期光合势有一定促进作用,但后期出现不利影响;全膜和半膜双垄沟播增加了玉米穗长、穗粗、穗行数和行粒数,但也增加了秃顶长。半膜平铺对穗长、穗粗和穗行数有一定促进作用,降低了秃顶长,但对行粒数作用并不明显。膜侧沟播对穗长、穗行数和行粒数有一定促进作用,但对穗粗和秃顶长作用并不明显;各种覆膜栽培方式均提高了玉米穗粒数和百粒重,但降低了单株成穗数。穗粒数与产量的灰色关联度最大、百粒重次之、单株成穗数最低;全膜双垄沟播、半膜双垄沟播、膜侧沟播、半膜平铺栽培方式分别比对照增产67.23%、60.08%、38.81%和20.02%,水分利用效率分别比对照提高66.43%、59.54%、38.35%和19.63%,经济收益分别比对照增加85.51%、69.58%、36.37%和18.69%。说明全膜双垄沟播玉米具有较高的产量和经济收益优势。  相似文献   

13.
In this study, we investigated crop yield and various chemical and microbiological properties in rhizosphere of wheat, maize, and faba bean grown in the field solely and intercropped (wheat/faba bean, wheat/maize, and maize/faba bean) in the second and third year after establishment of the cropping systems. In both years, intercropping increased crop yield, changed N and P availability, and affected the microbiological properties in rhizosphere of the three species compared to sole cropping. Generally, intercropping increased microbial biomass C, N, and P availability, whereas it reduced microbial biomass N in rhizosphere of wheat. The rhizosphere bacterial community composition was studied by denaturing gradient gel electrophoresis of 16S rRNA. In the third year of different cropping systems, intercropping significantly changed bacterial community composition in rhizosphere compared with sole cropping, and the effects were most pronounced in the wheat/faba bean intercropping system. The effects were less pronounced in the second year. The results show that intercropping has significant effects on microbiological and chemical properties in the rhizosphere, which may contribute to the yield enhancement by intercropping.  相似文献   

14.
This study investigated the effects of mineral-N addition and intensive mixing (analogous to disturbance by plowing) on decomposition of 14C-labelled maize (Zea mays L.) residue and soil organic matter (SOM). Soils were collected from the upper 5 cm of three land use types at Edelweiler, Germany: plow tillage (PT), reduced tillage (RT), and grassland (GL). Soils were incubated for 112 days at 20 °C, with or without 14C-labelled maize residue (4 g DM kg−1 soil), with or without nitrogen (100 mg N kg−1 soil as NH4NO3) and with or without intensive mixing.

The effect of mineral-N on maize residue decomposition differed depending on the stage of decomposition and land use type. Nitrogen accelerated residue decomposition rates in the first 5 days in RT and GL soils, but not in PT soil, and decreased residue decomposition rate in all three land use types after 11 days. At the end of the incubation, N suppressed 14CO2 efflux in RT and PT soils, but not in GL soil. Mineral-N did not increase SOM decomposition independently on the land use types.

Intensive mixing stimulated decomposition of both plant residue and SOM in all three land use types. However, effects were smaller in GL soil than in RT or PT soil, presumably because stronger soil aggregates in GL would have been less affected by mixing and allowed greater protection of SOM and plant residue against decomposition.  相似文献   


15.
以大穗型水稻‘金恢809’为试验材料,设置前氮后移(施氮量的30%作基肥,30%作蘖肥,30%作穗肥,10%作粒肥)及传统氮肥(施氮量的40%作基肥,30%作蘖肥,30%作穗肥)施用两种处理,并采用双向电泳技术分析了水稻生育后期根系对前氮后移调控的蛋白响应机制。通过构建的不同氮肥处理下水稻开花后15 d根系蛋白2-DE电泳图谱,并结合MALDI-TOF/MS分析,共成功鉴定到57个出现差异表达的蛋白,其中40个在前氮后移处理下上调表达,17个下调表达。依据其蛋白功能可以归为12类,主要涉及信号转导,氨同化,胁迫与防御,糖酵解,三羧酸循环,氨基酸代谢、蛋白合成及折叠等代谢途径。研究发现水稻生育后期根系GTP结合的核蛋白、GDP解离抑制因子、液泡型H+-ATP酶亚基C会响应氮肥的调控而出现表达变化,并将信号传递到电压依赖性离子通道蛋白、液泡型ATP酶亚基C以及膜联蛋白p35,进而调节根系细胞间物质运输与信息的传递。本研究结果还表明,前氮后移的施肥方式,通过适当增加水稻生育后期氮肥的施用,调节根系糖类转换、糖酵解及三羧酸循环相关蛋白的表达,增加了根系ATP的供应;通过增强根系中清除过氧化氢系统及防御相关蛋白的表达,延缓了根系的衰老;通过上调谷氨酸脱氢酶、天冬氨酸转氨酶和谷氨酞胺合成酶的表达丰度,促进了根系对土壤中氮元素的吸收与转运。研究结果对于进一步明确水稻根系响应氮素调控的分子生态特性具有重要的理论与实际意义。  相似文献   

16.
Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan,and occur widely in association with plants in heavy metal stress environment.However,little is known about the effect of inoculation with DSE fungi on the host plant under heavy metal stress.In this study,Gaeumannomyces cylindrosporus,which was isolated from Pb-Zn mine tailings in China and had been proven to have high Pb tolerance,was inoculated onto the roots of maize (Zea mays L.) seedlings to study the effect of DSE on plant growth,photosynthesis,and the translocation and accumulation of Pb in plant under stress of different Pb concentrations.The growth indicators (height,basal diameter,root length,and biomass) of maize were detected.Chlorophyll content,photosynthetic characteristics (net photosynthetic rate,transpiration rate,stomatal conductance,and intercellular CO2 concentration),and chlorophyll fluorescence parameters in leaves of the inoculated and non-inoculated maize were also determined.Inoculation with G.cylindrosporus significantly increased height,basal diameter,root length,and biomass of maize seedlings under Pb stress.Colonization of G.cylindrosporus improved the efficiency of photosynthesis and altered the translocation and accumulation of Pb in the plants.Although inoculation with G.cylindrosporus increased Pb accumulation in host plants in comparison to non-inoculated plants,the translocation factor of Pb in plant body was significantly decreased.The results indicated that Pb was accumulated mainly in the root system of maize and the phytotoxicity of Pb to the aerial part of the plant was alleviated.The improvement of efficiency of photosynthesis and the decrease of translocation factor of Pb,caused by DSE fungal colonization,were efficient strategies to improve Pb tolerance of host plants.  相似文献   

17.
Soil erosion remains a serious problem on most agricultural fields especially in the humid tropics. Experiments were conducted between 2003 and 2005 to test the efficiency and efficacy of using vetiver grass strip (VGS), vetiver grass mulch (VGM) and an agronomic practice of using an organomineral fertilizer (OMF) capable of improving soil structure and a control, as treatments, on soil and water conservation and improvement of maize yields. The treatments, in three replicates, were laid out in a randomized complete block design on 7% runoff plots on an Alfisol in the sub humid region of Southern Nigeria. Soil physical conditions were significantly best under VGM plots and least under VGS plots. Nevertheless, runoff and soil loss were generally in the increasing order of VGS, VGM and OMF. Although mean runoff and soil loss on VGS plots were 36.6% and 28% of the value of the control plot in 2003, when 2 tonnes/ha of vetiver grass mulch was applied to the control plot in 2004, these values were increased to 61.5% and 48.4%, respectively indicating a significant reduction of runoff and soil loss on the mulched plots. Vetiver grass mulch (VGM) at 6 tonnes/ha was more effective than VGS plots in reducing runoff than soil loss. Whereas mean runoff for VGM, VGS and OMF plots were 28.67, 38.44 and 42.44 mm, respectively, the corresponding mean soil losses at 6 tonnes/ha were 980.5 kg/ha, 389 kg/ha and 1251 kg/ha, respectively. Mean soil losses were 629 kg/ha and 591.5 kg/ha higher on VGM than VGS plots at 4 tonnes/ha and 6 tonnes/ha, respectively. Mean No3-N levels of runoff water on the VGS plots were 40.4% and 65.6% of the levels of the OMF and the control plots, respectively over 2003 and 2004. Nutrient loads of eroded sediments were highest for OMF plots and least for VGS plots. Carbon, Nitrogen and P contents of eroded sediments were 22–23.5%, 12–35.9%, and 20.6–37.6% lower on VGS plots than other treatments.

The significant beneficial effect of OMF in producing the highest yields was dwarfed by the potential danger of water pollution by nutrient loads in the absence of a soil erosion control measure. Although the differences were not significant, grain yields on VGM plots were 4% and 47.4% higher than on VGS plots when 4 and 6 tonnes/ha of grass mulch were applied.  相似文献   


18.
The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased (P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly (P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater (P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号