首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dCsail(t)/dt = −kCsoil(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where Csoil(t) is the available labile soil C (g m−2) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (FNT) and tilled (FT) fluxes, which is: FT=a1FNT ea2t, where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R2), index of agreement and model efficiency, with R2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a2) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a1). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a1) and −1.52 × 10−2 and 2.2 × 10−2 day−1 (a2). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters.  相似文献   

2.
The submontaneous tract of Punjab comprising 10% of the state, is prone to soil erosion by water. Soils of the area are coarse in texture, low in organic matter and poor in fertility. High intensity rains during the monsoon season result in fertile topsoil removal. There is an urgent need to control soil erosion in this region so as to improve soil productivity. A field study was conducted to estimate the effect of tillage and different modes of mulch application on soil erosion losses. Treatments comprised two levels of tillage, viz. minimum (Tm) and conventional (Tc) in the main plots and five modes of straw mulch application, viz. mulch spread over whole plot (Mw), mulch spread on lower one-third of plot (M1/3), mulch applied in strips (Ms), vertical mulching (Mv) and unmulched control (Mo), in subplots in a replicated split plot design. Rate of mulch application was 6 t ha−1 in all modes. Compared with Mo, Mw reduced runoff by 33%. Runoff and soil loss were 5 and 40% higher under Tc than under Tm. Though other modes of straw mulch application (M1/3, Ms and Mv) controlled soil loss better than Mo, their effectiveness was less than Mw. Tm was more effective in conserving soil moisture than Tc. Compared with Mo, Mw had 3–7% higher soil moisture content in the 0–30 cm soil depth under Tm. Minimum soil temperature of the surface layer was 1.4–2.4 °C lower under Mw than under Mo. Straw mulching reduced maximum soil temperature and helped in conserving soil moisture. Minimum tillage coupled with Mw was highly effective in reducing soil erosion losses, decreasing soil temperature and increasing moisture content by providing maximum surface cover.  相似文献   

3.
Tillage management and manure application are among the important factors affecting soil physical properties and crop yield. A 2-year field experiment was conducted on a silty clay loam soil (fine-loamy, mixed, thermic Typic Haplargids). Effects of two tillage systems (moldboard plowing as conventional tillage (T1) and disk harrowing as reduced tillage (T2)) at three farmyard manure rates (zero (M1), 30 (M2), 60 (M3) Mg ha−1) were studied on the soil physical properties and corn (Zea mays L.) yield. The experiment was carried out in split block design with three replications. Organic matter (OM) content, bulk density (BD), saturated hydraulic conductivity (KS), aggregate mean weight diameter (MWD) and dry biomass yield (DBY) were measured after harvesting in the second year. Manure application increased OM on both the row and inter-row tracks significantly. Manure application rate of 60 Mg ha−1 increased MWD (0.33, 0.40 and 0.75 mm for M1, M2 and M3, respectively) at the 0–5 cm soil layer, but the effect was not significant below 5 cm depth. Adding manure significantly decreased soil BD on the row tracks (1.39, 1.22 and 1.17 Mg m−3 for M1, M2 and M3 treatments, respectively), but did not have any significant effect on the inter-row tracks. Hydraulic conductivity was improved by manure applications both on the row and inter-row positions. Manure treatments M2 and M3 increased DBY compared to the M1 treatment. Although moldboard plowing increased the depth of root penetration significantly (43 cm for T1 and 30 cm for T2), the effect of tillage systems on yield and soil physical properties was not significant.  相似文献   

4.
Determining temporal changes in field-saturated hydraulic conductivity (Kfs) is important for understanding and modeling hydrological phenomena at the field scale. Little is known about temporal variability of Kfs values measured at permanent sampling points. In this investigation, the simplified falling head (SFH) technique was used for an approximately 2-year period to determine temporal changes in Kfs at 11 permanent sampling points established at the surface of a sandy loam soil. Additional Kfs measurements were obtained by the single-ring pressure infiltrometer (PI) technique to also compare the SFH and PI techniques. The lowest mean values of Kfs, M(Kfs), were detected in December and January (20.5 ≤ M(Kfs) ≤ 146.2 mm h−1), whereas higher results (190.5 ≤ M(Kfs) ≤ 951.9 mm h−1) were obtained in the other months of the year. The Kfs values were higher and less variable in the dry soil (θi ≤ 0.21 m3 m−3, M(Kfs) = 340.6 mm h−1, CV(Kfs) = 106%) than in the wet one (θi > 0.21 m3 m−3, M(Kfs) = 78.4 mm h−1, CV(Kfs) = 185%). Both wet and dry soil were less conductive at the end of the study period than at the beginning one but a more appreciable change was detected for the dry soil (Kfs decreasing by 83.4%) than for the wet one (Kfs decreasing by 63.0%). The simple SFH technique yielded Kfs results similar to the more laborious and time-consuming PI technique (i.e., mean values differing at the most by a factor of two). It was concluded that (i) the soil water content was an important factor affecting the Kfs results obtained in a relatively coarse-textured soil, (ii) the impact of time from the beginning of the experiment on the saturated hydraulic conductivity was larger for a repeated sampling of dry soil than of wet soil and (iii) the SFH technique yielded reliable Kfs results in a relatively short period of time without the need for extensive instrumentation or analytical methodology.  相似文献   

5.
Over the last two decades, soil cultivation practices in the southern Argentinean Pampas have been changing from a 7 year cash-crop production system alternated with 2–3 years under pasture, to a continuous cropping system. A better understanding of the impact of the period of time a field has been under continuous cropping on a broad spectrum of soil properties related to soil quality is needed to target for sustainable cropping systems. The objectives of this study were to: (i) assess the relationship between physical and chemical soil parameters related to soil quality and (ii) identify soil quality indicators sensitive to soil changes under continuous cropping systems in the Argentinean Pampas.

Correlation analysis of the 29 soil attributes representing soil physical and chemical properties (independent variables) and years of continuous cropping (dependent variable) resulted in a significant correlation (p < 0.05) in 78 of the 420 soil attribute pairs. We detected a clear relationship between hydraulic conductivity at tension h (Kh) and structural porosity (ρe); ρe being a simple tool for monitoring soil hydraulic conditions.

Soil tillage practice (till or no-till) affected most of the soil parameters measured in our study. It was not possible to find only one indicator related to the years under continuous cropping regardless of the cultivation practice. We observed a significant relationship between years under continuous cropping and Kh under no-till (NT) and wheat fallow (p < 0.001, R2 = 0.70). Under these conditions, K−40 diminished as the number of years under continuous cropping increased.

The change in mean weight diameter (CMWD) was the only physical parameter related to the number of years under continuous cropping, explaining 36% of the variability in the number of years under continuous cropping (p < 0.001) The combination of three soil quality indicators (CMWD, partial R2 = 0.38; slope of the soil water retention curve at its inflexion point (S), partial R2 = 0.14 and cation exchange capacity (CEC), partial R2 = 0.13) was able to explain, in part, the years under continuous cropping (R2 = 0.65; p value > 0.001), a measure related to soil quality.  相似文献   


6.
Six different vegetable crop residues were incorporated in the field and N mineralization from the residues and from an unamended plot was followed over 4 months by periodically monitoring mineral N contents of the soil. The crop residues were also fractionated according to a modified Stevenson chemical fractionation. Nitrogen mineralization parameters of the first order kinetic model N(t)=NA(1−ekt) were derived from the chemical fractionation data. The first order model was used in combination with a model describing the temperature dependence of N mineralization and a simple leaching model to predict N mineralization rates and nitrate redistribution after crop residue incorporation under field conditions. Comparison of predicted and measured mineral N contents in the upper soil layer (0–30 cm) before the start of leaching showed that the model was able to predict N mineralization from both soil organic matter and crop residues under field conditions. From the onset of leaching, mineral N contents were slightly overestimated in the upper layer and underestimated in the lower soil layers. Although the Burns leaching model underestimated the leaching rate, the general pattern of nitrate movement was simulated satisfactorily. Statistical analysis using the variance ratio test yielded small but significant F values, indicating that the model can still be improved. The modelling efficiency was rather high and the coefficient of residual mass very close to zero. Linear regression between measured and simulated nitrate contents over the whole profile (0–120 cm) for all samplings yielded Y=9.6+0.876X (r=0.94***) with all deviations smaller than 25 kg N ha−1. Total N mineralization ranged from 48 kg N ha−1 for the control plot to 136 kg N ha−1 for the plots with cauliflower residues and cumulative leaching losses from 26–66 kg N ha−1, with most of the mineral N left in the 60–120 cm layer. These results show that N losses by leaching in winter can be high when vegetable crop residues are incorporated, even when there is little mineral N in the soil at the time of incorporation.  相似文献   

7.
The spatial variability of the saturated hydraulic conductivity (Ks) of a greenhouse banana plantation volcanic soil was investigated with three different permeameters: (a) the Philip-Dunne field permeameter, an easy to implement and low cost device; (b) the Guelph field permeameter; (c) the constant head laboratory permeameter. Ks was measured on a 14×5 array of 2.5 m×5 m rectangles at 0.15 m depth using the above three methods. Ks differences obtained with the different permeameters are explained in terms of flow dimensionality and elementary volume explored by the three methods. A sinusoidal spatial variation of Ks was coincident with the underlying alignment of banana plants on the field. This was explained in terms of soil disturbances, such as soil compaction, originated by management practices and tillage. Soil salinity showed some coincidence in space with the hydraulic conductivity, because of the irrigation system distribution, but a causal relationship between the two is however difficult to support. To discard the possibility of an artefact, the original 70 point mesh was doubled by intercalation of a second 14×5 grid, such that the laboratory Ks was finally determined on a 140 points 2.5 m×2.5 m square grid. Far from diluting such anisotropy this was further strengthened after inclusion of the new 70 points. The porosity (φ) determined on the same laboratory cores shows a similar sigmoid trend, thus pointing towards a plausible explanation for such variability. A power-law relationship was found between saturated hydraulic conductivity and porosity, Ksφn (r2=0.38), as stated by the Kozeny–Carman relation. A statistical reformulation of the Kozeny–Carman relation is proposed that both improved its predictability potential and allows comparisons between different representative volumes, or Ks data sets with different origin. Although the two-field methods: Guelph and Philip-Dunne, also follow a similar alignment trend, this is not so evident, suggesting that additional factors affect Ks measured in the field. Finally, geostatistical techniques such as cross correlograms estimation are used to further investigate this spatial dependence.  相似文献   

8.
The carbon management index (CMI) is derived from the total soil organic C pool and C lability and is useful to evaluate the capacity of management systems to promote soil quality. However, the CMI has not been commonly used for this purpose, possible due to some limitations of the 333 mM KMnO4-chemical oxidation method conventionally employed to determine the labile C fraction. We hypothesized, however, that physical fractionation of organic matter is an alternative approach to determine the labile C. The objectives of this study were (i) to assess the physical fractionation with density (NaI 1.8 Mg m−3) and particle-size separation (53 μm mesh) as alternative methods to the KMnO4-chemical oxidation (60 and 333 mM) in determining the labile C and thus the CMI, and (ii) to evaluate the capacity of long-term (19 years) no-till cropping systems (oat/maize: O/M, oat + vetch/maize: O + V/M, oat + vetch/maize + cowpea: O + V/M + C, and pigeon pea + maize: P + M) and N fertilization (0 and 180 kg N ha−1) to promote the soil quality of a Southern Brazilian Acrisol, using the CMI as the main assessment parameter. Soil samples were collected from 0 to 12.5 cm layer, and the soil of an adjacent native grassland was taken as reference. The mean annual C input of the cropping systems varied from 3.4 to 6.0 Mg ha−1 and the highest amounts occurred in legume-based cropping systems and N fertilized treatments. The C pool index was positively related to the annual C input (r2 = 0.93, P < 0.002). The labile C determined by density (4.4–10.4% of C pool) and particle-size separation (9.5–17.7% of C pool) had a close relationship (r = 0.60 and 0.85, respectively) with the labile C determined using 60 mM KMnO4 (7.3–10.5% of C pool). The labile C resulting from the three methods was related to the annual C input imparted by the cropping systems (r2 = 0.67–0.88), reinforcing the possibility of using physical fractionation as an alternative approach to determine labile C. In contrast, the chemical method using 333 mM KMnO4 was not sensitive to different cropping systems and resulted in too high percentage of labile C, varying from 16.8 to 35.2% of the C pool. The CMI based on physical fractionation was a sensitive tool for assessing the capacity of management systems to promote soil quality, as evidenced by its close correlation (r = 0.88, at average) with soil physical, chemical, and biological attributes. The introduction of winter (vetch) and, especially, summer legume cover crops (cowpea and pigeon pea), or application of fertilizer-N, improved the capacity of the management system into promote soil quality in this subtropical Acrisol.  相似文献   

9.
Depending upon how soil is managed, it can serve as a source or sink for atmospheric carbon dioxide (CO2). As the atmospheric CO2 concentration continues to increase, more attention is being focused on the soil as a possible sink for atmospheric CO2. This study was conducted to examine the short-term effects of crop rotation and N fertilization on soil CO2 emissions in Central Iowa. Soil CO2 emissions were measured during the growing seasons of 2003 and 2004 from plots fertilized with three N rates (0, 135, and 270 kg N ha−1) in continuous corn and a corn–soybean rotation in a split-plot design. Soil samples were collected in the spring of 2004 from the 0–15 cm soil depth to determine soil organic C content. Crop residue input was estimated using a harvest index based on the measured crop yield. The results show that increasing N fertilization generally decreased soil CO2 emissions and the continuous corn cropping system had higher soil CO2 emissions than the corn–soybean rotation. Soil CO2 emission rate at the peak time during the growing season and cumulative CO2 under continuous corn increased by 24 and 18%, respectively compared to that from corn–soybean rotation. During this period, the soil fertilized with 270 kg N ha−1 emitted, on average, 23% less CO2 than the soil fertilized with the other two N rates. The greatest difference in CO2 emission rate was observed in 2004; where plots that received 0 N rate had 31% greater CO2 emission rate than plots fertilized with 270 kg N ha−1. The findings of this research indicate that changes in cropping systems can have immediate impact on both rate and cumulative soil CO2 emissions, where continuous corn caused greater soil CO2 emissions than corn soybean rotation.  相似文献   

10.
Studying on spatial and temporal variation in soil organic carbon (SOC) is of great importance because of global environmental concerns. Tillage-induced soil erosion is one of the major processes affecting the redistribution of SOC in fields. However, few direct measurements have been made to investigate the dynamic process of SOC under intensive tillage in the field. Our objective was to test the potential of 137Cs and 210Pbex for directly assessing SOC redistribution on sloping land as affected by tillage. Fifty plowing operations were conducted over a 5-day period using a donkey-drawn moldboard plow on a steep backslope of the Chinese Loess Plateau. Profile variations of SOC, 137Cs and 210Pbex concentrations were measured in the upper, middle and lower positions of the control plot and the plot plowed 50 times. 137Cs concentration did not show variations in the upper 0–30 cm of soil whereas 210Pbex showed a linear decrease (P < 0.05) with soil depth in the upper and middle positions, and an exponential decrease (P < 0.01) at the lower position of the control plot. The amounts of SOC, 137Cs and 210Pbex of sampling soil profiles increased in the following order: lower > middle > upper positions on the control plot. Intensive tillage resulted in a decrease of SOC amounts by 35% in the upper and by 44% in the middle positions for the soil layers of 0–45 cm, and an increase by 21% in the complete soil profile (0–100 cm) at the lower position as compared with control plot. Coefficients of variation (CVs) of SOC in soil profile decreased by 18.2% in the upper, 12.8% in the middle, and 30.9% in the lower slope positions whereas CVs of 137Cs and 210Pbex decreased more than 31% for all slope positions after 50 tillage events. 137Cs and 210Pbex in soil profile were significantly linearly correlated with SOC with R2 of 0.81 and 0.86 (P < 0.01) on the control plot, and with R2 of 0.90 and 0.86 (P < 0.01) on the treatment plot. Our results evidenced that 37Cs and 210Pbex, and SOC moved on the sloping land by the same physical mechanism during tillage operations, indicating that fallout 137Cs and 210Pbex could be used directly for quantifying dynamic SOC redistribution as affected by tillage erosion.  相似文献   

11.
Seventy years of different management treatments have produced significant differences in runoff, erosion, and ponded infiltration rate in a winter wheat (Triticum aestivum L.)–summer fallow experiment in OR, USA. We tested the hypothesis that differences in infiltration are due to changes in soil structure related to treatment-induced biological changes. All plots received the same tillage (plow and summer rod-weeding). Manure (containing 111 kg N ha−1), pea (Pisum sativum L.), vine (containing 34 kg N ha−1), or N additions of 0, 45 and 90 kg ha−1 were treatment variables with burning of residue as an additional factor within N-treatments. We measured soil organic C and N, water stability of whole soil, water stable aggregates, percolation through soil columns, glomalin, soil-aggregating basidiomycetes, earthworm populations, and dry sieve aggregate fractions. Infiltration was correlated (r = 0.67–0.95) to C, N, stability of whole soil, percolation, and glomalin. Basidiomycete extracellular carbohydrate assay values and earthworm populations did not follow soil C concentration, but appeared to be more sensitive to residue burning and to the addition of pea vine residue and manure. Dry sieve fractions were not well correlated to the other variables. Burning reduced (p < 0.05) water stability of whole soil, total glomalin, basidiomycetes, and earthworm counts. It also reduced dry aggregates of 0.5–2.0 mm size, but neither burning nor N fertilizer affected total C or total N or ponded infiltration rate. Water stability of whole soil and of 1–2-mm aggregates was greater at 45 kg N ha−1 than in the 0 and 90 kg N ha−1 treatments. Zero N fertilizer produced significantly greater 0.5–2.0 mm dry aggregate fractions. We conclude that differences in infiltration measured in the field are related to relatively small differences in aggregate stability, but not closely related to N or residue burning treatments. The lack of an effect of N fertilizer or residue burning on total C and N, along with the excellent correlation between glomalin and total C (r = 0.99) and total N (r = 0.98), indicates that the major pool of soil carbon may be dependent on arbuscular mycorrhizal fungi.  相似文献   

12.
On-line measurement of soil compaction is needed for site specific tillage management. The soil bulk density (ρ) indicating soil compaction was measured on-line by means of a developed compaction sensor system that comprised several sensors for on-line measurement of the draught (D) of a soil cutting tool (subsoiler), the soil cutting depth (d) and the soil moisture content (w). The subsoiler D was measured with a single shear beam load cell, whereas d was measured with a wheel gauge that consisted of a swinging arm metal wheel and a linear variable differential transducer (LVDT). The soil w was measured with a near infrared fibre-type spectrophotometer sensor. These on-line three measured parameters were used to calculate ρ, by utilising a hybrid numerical–statistical mathematical model developed in a previous study. Punctual kriging was performed using the variogram estimation and spatial prediction with error (VESPER) 1.6 software to develop the field maps of ρ, soil w, subsoiler d and D, based on 10 m × 10 m grid. To verify the on-line measured ρ map, this map was compared with the map measured by the conventional core sampling method.

The spherical semivariogram models, providing the best fit for all properties was used for kriging of different maps. Maps developed showed that no clear correlation could be detected between different parameters measured and subsoiler D. However, the D value was smaller at shallow penetration d, whereas large D coincided with large ρ values at few positions in the field. Maps of ρ measured with the core sampling and on-line methods were similar, with correlation coefficient (r) and the standard error values of 0.75 and 0.054 Mg m−3, respectively. On-line measured ρ exhibited larger errors at very dry zones. The normal distribution of the ρ error between the two different measurement methods showed that about 72% of the errors were less than 0.05 Mg m−3 in absolute values. However, the overall mean error of on-line measured ρ was of a small value of 2.3%, which ensures the method accuracy for on-line measurement of ρ. Measurement under very dry conditions should be minimised, because it can lead to a relatively large error, and hence, compacted zones at dry zones cannot be detected correctly.  相似文献   


13.
Soil erodibilty during concentrated flow (Kc) and critical flow shear stress (τcr), both reflecting the soil's resistance to erosion by concentrated runoff, are important input parameters in many physically-based soil erosion models. Field data on the spatial and temporal variability of these parameters is limited but crucial for accurate prediction of soil loss by rill or gully erosion. In this study, the temporal variations in Kc and τcr for a winter wheat field on a silt loam soil under three different tillage practices (conventional ploughing, CP; shallow non-inversion tillage, ST; deep non-inversion tillage, DT) in the Belgian Loess Belt were monitored during one growing season. Undisturbed topsoil samples (0.003 m3) were taken every three weeks and subjected to five different flow shear stresses (τ = 4–45 Pa) in a laboratory flume to simulate soil detachment by concentrated flow. To explain the observed variation, relevant soil and environmental parameters were measured at the time of sampling. Results indicated that after two years of conservation tillage, Kc(CP) > Kc(DT) > Kc(ST). Kc values can be up to 10 times smaller for ST compared to CP but differences strongly vary over time, with an increasing difference with decreasing soil moisture content. The beneficial effects of no-tillage are not reflected in τcr. Kc values vary from 0.006 to 0.05 sm−1 for CP and from 0.0008 to 0.01 sm−1 for ST over time. Temporal variations in Kc can be mainly explained by variations in soil moisture content but consolidation effects, root growth, residue decomposition and the presence of microbiotic soil crusts as well play a role. τcr values increase with increasing soil shear strength but Kc seems more appropriate to represent the temporal variability in soil erosion resistance during concentrated flow. The large intra-seasonal variations in Kc, which are shown to be at least equally important as differences between different soil types reported in literature, demonstrate the importance of incorporating temporal variability in soil erosion resistance when modelling soil erosion by concentrated flow.  相似文献   

14.
In the Ethiopian highlands, large-scale stone bund building programs are implemented to curb severe soil erosion. Development of soil fertility gradients is often mentioned as the major drawback of stone bund implementation, as it would result in a dramatic lowering of crop yield. Therefore, the objectives of this study are to assess soil fertility gradients on progressive terraces and their influence on crop yield, in order to evaluate the long-term sustainability of stone bunds in the Ethiopian Highlands.

The study was performed near Hagere Selam, Tigray and comprises (i) measurement of Pav, Ntot and Corg along the slope on 20 representative plots and (ii) crop response measurement on 143 plots. Results indicate that levels of Pav, Ntot and Corg in the plough layer are highly variable between plots and mainly determined by small-scale soil and environmental features, plot history and management. After correcting for this “plot effect” a significant relationship (p < 0.01) was found between the position in the plot relative to the stone bund and levels of Pav and Ntot, which are higher near the lower stone bund, especially on limestone parent material. For Corg and on basalt-derived soils in general no significant relationship was found. Although soil fertility gradients are present, they are not problematic and can be compensated by adapted soil management. Only in areas where a Calcaric or Calcic horizon is present at shallow depth, care should be taken. Crop Yields increased by 7% compared to the situation without stone bunds, if a land occupation of 8% by the structures is accounted for. Yield increased from 632 to 683 kg ha−1 for cereals, from 501 to 556 kg ha−1 (11%) for Eragrostis tef and from 335 to 351 kg ha−1 for Cicer arietinum.

No negative effects reducing stone-bund sustainability were found in this study. Soil erosion on the other hand, poses a major threat to agricultural productivity. Stone bund implementation therefore is of vital importance in fighting desertification and establishing sustainable agriculture in the Ethiopian highlands.  相似文献   


15.
Microbial induced nitrous oxide emissions from an arable soil during winter   总被引:18,自引:0,他引:18  
Nitrous oxide (N2O) release rates were measured from an fertilized and unfertilized plot on silty loam (Gleyic Luvisol) cropped with winter wheat. Rates were estimated using a closed soil cover box technique throughout a continuous investigation period of 12 months. The 12 months of investigation were separated into the cropping period (March to November) and the winter period (December to February). Soil management and all N-applications were made during the cropping period. The application of 220 kg N to the soil induced significantly higher N2O losses throughout the cropping season compared to the unfertilized soil. No significant differences were found during winter, where 70% of the annual N2O emissions were found. The temporal changes of the N2O emission rates on both soils were highly correlated (r=0.96; P≤0.001), and could be attributed to temporal changes in soil temperature (r=0.65; P≤0.01) resulting from freezing and thawing cycles. In order to decide whether the N2O production can be attributed to microbial or non-microbial processes in soil, the time courses of the N2O emissions from a γ-ray sterilized and a non-sterilized soil were compared in a laboratory experiment, where the freezing and thawing cycles were simulated according to field conditions. The results indicated, that microbial processes were responsible for N2O production in thawing and even frozen soils.  相似文献   

16.
Landscape variability associated with topographic features affects the spatial pattern of soil water and N redistribution, and thus N uptake and crop yield. A landscape-scale study was conducted in a center pivot irrigated field on the southern High Plains of Texas in 1999 to assess soil water, soil NO3-N, cotton (Gossypium hirsutum L.) lint yield, and N uptake variability in the landscape, and to determine the spatial correlation between these landscape variables using a state-space approach. The treatments were irrigation at 50 and 75% cotton potential evapotranspiration (ET). Neutron access tubes were placed at a 15-m interval along a 710 m (50% ET) and 820 m (75% ET) transect across the field. Soil NO3-N in early spring was autocorrelated at a distance varying between 60 and 80 m. Measured soil volumetric water content (WC), total N uptake, and lint yield were generally higher on lower landscape positions. Cotton lint yield was significantly correlated to soil WC (r=0.76), soil NO3-N (r=0.35), and site elevation (r=−0.54). Differences of site elevation between local neighboring points explained the soil water, NO3-N and lint yield variability at the micro-scale level in the landscape. Soil WC, cotton lint yield, N uptake, and clay content were crosscorrelated with site elevation across a lag distance of ±30–40 m. The state-space analysis showed that cotton lint yield was positively weighted on soil WC availability and negatively weighted on site elevation. Cotton lint yield state-space models give insights on the association of soil physical and chemical properties, lint yield, and landscape processes, and have the potential to improve water and N management at the landscape-scale.  相似文献   

17.
吸附反应时间对潮土中除草剂阿特拉津吸附行为的影响   总被引:2,自引:0,他引:2  
A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.  相似文献   

18.
在对长江三峡库区坡耕地植物篱系统调查样地土壤样品颗粒分析的基础上,对植物篱系统内土壤颗粒分布及土壤分形维数与土壤物理性质和土壤养分含量的关系进行了研究,结果表明:(1)乔木类、草本类和灌木类植物篱带间坡耕地土壤砂粒含量比其对应的植物篱带内土壤沙砾平均含量分别高10.4%,13.7%和9.2%;而黏粒含量在植物篱带内富集,其平均含量比植物篱带间坡耕地土壤黏粒含量分别高14.3%,19.5%和10.7%;(2)土壤分形维数与土壤黏粒和土壤粉粒含量具有显著(P < 0.01)的正相关关系,而与土壤砂粒含量显著负相关。(3)土壤分形维数与土壤孔隙度、含水量和土壤饱和导水率极显著正相关,而土壤容重与分形维数呈显著负相关关系。土壤分形维数与土壤有机质、土壤全氮、土壤有效氮、土壤全钾、土壤有效钾、土壤全磷含量和阳离子交换量显著相关,而土壤有效磷含量和土壤分形维数相关性不显著。  相似文献   

19.
The effect of application dose and soil organic matter (SOM) stratification on changes in atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) extractable residues (ER) were investigated. Two soils [Entic Haplustoll (EH) and Typic Hapludoll (TH)] with contrasting SOM content and form and without previous atrazine exposure were selected. Sampling was carried out at two depths: 0–2 and 2–5 cm. Atrazine ER were measured at 0, 3, 7, 14, 28, and 56 days in laboratory incubation. Atrazine concentration recovered 1 h after of its application (Ct0) was used as an index of the soil capacity to reduce the atrazine extractable fraction. SOM stratification was studied by means of physical fractionation. In both soils, the higher OC concentration was found in the 200–2000 μm fraction (OCf 200–2000). Soils differed in terms of the OCf 50–200/OCf 200–2000 ratio. This ratio increased with depth in EH soil: 0.23 (0–2 cm) and 2.00 (2–5 cm). In TH soil, the ratio was 0.80 (0–2 cm) and 0.50 (2–5 cm). The t1/2 values ranged from 9 to 19 days, depending on soil type and atrazine application dose. The upper layer Ct0 and k were higher for higher atrazine doses. Implementation of a split application dose of atrazine may be an effective alternative to extend its half-life in soil solution, as well as involving a lower potential risk of soil accumulation or vertical movement in the soil profile towards deep soil layers and groundwater.  相似文献   

20.
Pere Rovira  V. Ramn Vallejo 《Geoderma》2008,144(3-4):517-534
The current view on the relationship between the δ13C of pedogenic carbonates and soil organic matter is based on static studies, in which soil profiles are analysed at a given moment of their development. A dynamic approach to this question should also be possible by studying under field conditions how the δ13C of carbonates changes as organic matter decomposes. No such study has been undertaken owing to the slowness of the changes in the δ13C of carbonates, since it has been calculated that a detectable change will occur only after millenia. Nevertheless, this may not be true where soil CO2 efflux is intense, as expected in soil zones with high microbial activity. In this paper we test the latter assumption by incubating mixtures of plant material and carbonate-rich red earth in the field at depths of 5, 20 and 40 cm. Four types of plant material were tested: Medicago sativa, Eucalyptus globulus, Quercus ilex and Pinus halepensis. Because the isotopic composition of these plant materials is known, we can determine the isotopic composition of the respired C and study how it relates to the (expected) changes in the δ13C. After two years of field incubation, the changes in δ13C of carbonates were high enough to be reliably detected and quantified, thus showing that the isotopic composition of soil carbonates can change quite rapidly in biologically active soil horizons. The observed changes are possible only if we assume that the increase in δ13C in the overall path respired C → pedogenic carbonate is much higher than the usually applied standard factors (about 15‰). These enrichments can be explained by assuming, as does the currently accepted paradigm, that the precipitation of new carbonates occurs in an open system in which the penetration of free-air CO2 plays a major role. On the other hand, these enrichments can also be explained by an alternative interpretation, which assumes that the dissolution–precipitation carbonate cycles occur in systems that can be at least temporarily closed. Thus, we suggest that both possibilities (carbonate dissolution and precipitation in either an open or closed system) can coexist in a given soil, even though one or the other will dominate in any given time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号