首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Sequential diffusion techniques used to speciate inorganic nitrogen-15 (15N) during soil or water analysis are complicated by incomplete recovery of ammonium (NH4+)-N, introducing error in the subsequent determination of nitrate (NO3)-N. Based on studies to evaluate different strategies for minimizing cross-contamination error in Mason-jar diffusions, a simple cleaning technique was developed that involves an additional 6-h diffusion using 0.6 M boric acid (H3BO3) at room temperature following the recovery of NH4+-N. This technique was 60–87% effective for reducing cross-contamination of unlabeled NO3-N by labeled NH4+-N and became more effective for controlling analytical error with decreasing sample volumes, lower NH4+-N enrichment, and larger quantities of NO3-N. When used with the cleaning technique described, sequential diffusions were far superior for 15N analysis of NO3-N, as compared to the nonsequential approach that involves an isotope dilution calculation after separate diffusions to determine NH4+-N and total mineral N.  相似文献   

2.
Extraction of soil nitrate nitrogen (NO3 ?-N) and ammonium nitrogen (NH4 +-N) by chemical reagents and their determinations by continuous flow analysis were used to ascertain factors affecting analysis of soil mineral N. In this study, six factors affecting extraction of soil NO3 ?-N and NH4 +-N were investigated in 10 soils sampled from five arable fields in autumn and spring in northwestern China, with three replications for each soil sample. The six factors were air drying, sieve size (1, 3, and 5 mm), extracting solution [0.01 mol L?1 calcium chloride (CaCl2), 1 mol L?1 potassium chloride (KCl), and 0.5 mol L?1 potassium sulfate (K2SO4)] and concentration (0.5, 1, and 2 mol L?1 KCl), solution-to-soil ratio (5:1, 10:1, and 20:1), shaking time (30, 60, and 120 min), storage time (2, 4, and 6 weeks), and storage temperature (?18 oC, 4 oC, and 25 oC) of extracted solution. The recovery of soil NO3 ?-N and NH4 +-N was also measured to compare the differences of three extracting reagents (CaCl2, KCl, and K2SO4) for NO3 ?-N and NH4 +-N extraction. Air drying decreased NO3 ?-N but increased NH4 +-N concentration in soil. Soil passed through a 3-mm sieve and shaken for 60 min yielded greater NO3 ?-N and NH4 +-N concentrations compared to other treatments. The concentrations of extracted NO3 ?-N and NH4 +-N in soil were significantly (P < 0.05) affected by extracting reagents. KCl was found to be most suitable for NO3 ?-N and NH4 +-N extraction, as it had better recovery for soil mineral N extraction, which averaged 113.3% for NO3 ?-N and 94.9% for NH4 +-N. K2SO4 was not found suitable for NO3 ?-N extraction in soil, with an average recovery as high as 137.0%, and the average recovery of CaCl2 was only 57.3% for NH4 +-N. For KCl, the concentration of extracting solution played an important role, and 0.5 mol L?1 KCl could fully extract NO3 ?-N. A ratio of 10:1 of solution to soil was adequate for NO3 ?-N extraction, whereas the NH4 +-N concentration was almost doubled when the solution-to-soil ratio was increased from 5:1 to 20:1. Storage of extracted solution at ?18 °C, 4 °C, and 25 °C had no significant effect (P < 0.05) on NO3 ?-N concentration, whereas the NH4 +-N concentration varied greatly with storage temperature. Storing the extracted solution at ?18 oC obtained significantly (P < 0.05) similar results with that determined immediately for both NO3 ?-N and NH4 +-N concentrations. Compared with the immediate extraction, the averaged NO3 ?-N concentration significantly (P < 0.05) increased after storing 2, 4, and 6 weeks, respectively, whereas NH4 +-N varied in the two seasons. In conclusion, using fresh soil passed through a 3-mm sieve and extracted by 0.5 mol L?1 KCl at a solution-to-soil ratio of 10:1 was suitable for extracting NO3 ?-N, whereas the concentration of extracted NH4 +-N varied with KCl concentration and increased with increasing solution-to-soil ratio. The findings also suggest that shaking for 60 min and immediate determination or storage of soil extract at ?18 oC could improve the reliability of NO3 ?-N and NH4 +-N results.  相似文献   

3.
Abstract

A comparison was made of automated procedures and steam distillation for analysis of NH4 + and NO3 in KCl extracts of soils. Automated analysis of NH4 + utilized the phenate‐hypochlorite reaction. Nitrate was analyzed by E. coli reduction of NO3 to NO2‐which was then determined colorimetrically by reaction with sulfanilamide and napthylethylenediamine diHCl. Soil extracts were made with 1 M and 2 M KCl. Extracting with 1 M KCl was as effective as 2 M KCl. Extracts in 1 M KCl did not interfere with E. coli reduction of NO3‐, but 2 M KCl did. The automated procedures when compared to distillation gave similar if not better precision and reduced variation particularly at low N concentrations. The automated procedure tended to give higher values at higher NO3‐concentrations. Reduced time required for the analyses provided an additional advantage for the automated procedures.  相似文献   

4.
 Nitrogen excretion rates of 15N-labeled earthworms and contributions of 15N excretion products to organic (dissolved organic N) and inorganic (NH4-N, NO3-N) soil N pools were determined at 10  °C and 18  °C under laboratory conditions. Juvenile and adult Lumbricus terrestris L., pre-clitellate and adult Aporrectodea tuberculata (Eisen), and adult Lumbricus rubellus (Hoffmeister) were labeled with 15N by providing earthworms with 15N-labeled organic substrates for 5–6 weeks. The quantity of 15N excreted in unlabeled soil was measured after 48 h, and daily N excretion rates were calculated. N excretion rates ranged from 274.4 to 744 μg N g–1 earthworm fresh weight day–1, with a daily turnover of 0.3–0.9% of earthworm tissue N. The N excretion rates of juvenile L. terrestris were significantly lower than adult L. terrestris, and there was no difference in the N excretion rates of pre-clitellate and adult A. tuberculata. Extractable N pools, particularly NH4-N, were greater in soils incubated with earthworms for 48 h than soils incubated without earthworms. Between 13 and 40% of excreted 15N was found in the 15N-mineral N (NH4-N+NO3-N) pool, and 13–23% was in the 15N-DON pool. Other fates of excreted 15N may have been incorporation in microbial biomass, chemical or physical protection in non-extractable N forms, or gaseous N losses. Earthworm excretion rates were combined with earthworm biomass measurements to estimate N flux from earthworm populations through excretion. Annual earthworm excretion was estimated at 41.5 kg N ha–1 in an inorganically-fertilized corn agroecosystem, and was equivalent to 22% of crop N uptake. Our results suggest that the earthworms could contribute significantly to N cycling in corn agroecosystems through excretion processes. Received: 12 April 1999  相似文献   

5.
 The objectives of this work were to evaluate the inhibitory action on nitrification of 3,4-dimethylpyrazole phosphate (DMPP) added to ammonium sulphate nitrate [(NH4)2SO4 plus NH4NO3; ASN] in a Citrus-cultivated soil, and to study its effect on N uptake. In a greenhouse experiment, 2 g N as ASN either with or without 0.015 g DMPP (1% DMPP relative to NH4 +-N) was applied 6 times at 20-day intervals to plants grown in 14-l pots filled with soil. Addition of DMPP to ASN resulted in higher levels of NH4 +-N and lower levels of NO3 -N in the soil during the whole experimental period. The NO3 -N concentration in drainage water was lower in the ASN plus DMPP (ASN+DMPP)-treated pots. Also, DMPP supplementation resulted in greater uptake of the fertilizer-N by citrus plants. In another experiment, 100 g N as ASN, either with or without 0.75 g DMPP (1% DMPP relative to NH4 +-N) was applied to 6-year-old citrus plants grown individually outdoors in containers. Concentrations of NH4 +-N and NO3 -N at different soil depths and N distribution in the soil profile after consecutive flood irrigations were monitored. In the ASN-amended soil, nitrification was faster, whereas the addition of the inhibitor led to the maintenance of relatively high levels of NH4 +-N and NO3 -N in soil for longer than when ASN was added alone. At the end of the experiment (120 days) 68.5% and 53.1% of the applied N was leached below 0.60 m in the ASN and ASN+DMPP treatments, respectively. Also, leaf N levels were higher in plants fertilized with ASN+DMPP. Collectively, these results indicate that the DMPP nitrification inhibitor improved N fertilizer efficiency and reduced NO3 leaching losses by retaining the applied N in the ammoniacal form. Received: 31 May 1999  相似文献   

6.
 Rapid nitrate leaching losses due to current agricultural N management practices under the humid tropical environmental conditions of the Pacific island of Guam may contaminate fresh and salt water resources. Potential environmental contamination of the Northern Guam aquifer, which is overlain by shallow limestone-derived soils, is a major public concern because the aquifer is the sole underground source of fresh water for the island. The objectives of this study were to examine the use of waste office paper as a possible management alternative for reducing nitrate leaching due to N fertilizer applications in northern Guam while also providing sufficient N for crop growth. In a laboratory study, increasing rates of waste paper application reduced NO3 -N leaching up to approximately 200 days after incorporation of N fertilizer and paper treatments. Subsequent mineralization of immobilized N from paper applications was also observed, although cumulative NO3 -N leaching at the highest rate of paper addition was lower than the control after 394 days of incubation. The effect of waste paper on N availability and NO3 -N leaching after application of N fertilizer at rates up to 500 kg N ha–1 was also evaluated in two field experiments planted with sweet corn (Zea mays var. rugosa Bonaf.) during consecutive dry and wet periods. Leaching losses of NO3 -N were higher during the wet cropping season, leading to lower crop yields and crop N uptake. Combining paper with N fertilizer reduced NO3 -N leaching losses but also decreased crop ear yields up to N fertilizer application rates of 250 kg N ha–1 during the dry cropping season and up to rates of 100 kg N ha–1 during the wet period. Although combining waste paper with N fertilizer reduced NO3 -N leaching losses, no improvements in fertilizer N recovery were observed during the field experiments. This lack of crop response may be due to the importance of early season N availability for the short-season horticultural crops grown on Guam. We suggest that the application of waste paper may be a useful management practice to reduce NO3 -N leaching losses when high soil NO3 -N levels remain after cropping due either to crop failure or to over-application of N fertilizer. Received: 11 May 1999  相似文献   

7.
 The short-term (24 h) and medium-term (30 day) influence of N salts (NH4Cl, NaNO3 and NaNO2) and a non-N salt (NaCl) on first-order rate constants, k (h–1) and thresholds (CTh) for atmospheric CH4 oxidation by homogenized composites of upland boreal forest and tundra soils was assessed at salt additions ranging to 20 μmol g–1 dry weight (dw) soil. Additions of NH4Cl, NaNO3 and NaCl to 0.5 μmol g–1 dw soil did not significantly decrease k relative to watered controls in the short term. Higher concentrations significantly reduced k, with the degree of inhibition increasing with increasing dose. Similar doses of NH4Cl and NaCl gave comparable decreases in k relative to controls and both soils showed low native concentrations of NH4 +-N (≤1 μmol g–1dw soil), suggesting that the reduction in k was due primarily to a salt influence rather than competitive inhibition of CH4 oxidation by exogenous NH4 +-N or NH4 +-N released through cation exchange. The decrease in k was consistently less for NaNO3 than for NH4Cl and NaCl at similar doses, pointing to a strong inhibitory effect of the Cl counter-anion. Thresholds for CH4 oxidation were less sensitive to salt addition than k for these three salts, as significant increases in CTh relative to controls were only observed at concentrations ≥1.0 μmol g–1 dw soil. Both soils were more sensitive to NaNO2 than to other salts in the short term, showing a significant decrease in k at an addition of 0.25 μmol NaNO2 g–1 dw soil that was clearly attributable to NO2 . Soils showed no recovery from NaCl, NH4 +-N or NaNO3 addition with respect to atmospheric CH4 oxidation after 30 days. However, soils amended with NaNO2 to 1.0 μmol NaNO2 g–1 dw showed values of k that were not significantly different from controls. Recovery of CH4-oxidizing ability was due to complete oxidation of NO2 -N to NO3 -N. Analysis of soil concentrations of N salts necessary to inhibit atmospheric CH4 oxidation and regional rates of N deposition suggest that N deposition will not decrease the future sink strength of upland high-latitude soils in the atmospheric CH4 budget. Received: 30 April 1999  相似文献   

8.
Tillage systems influence soil properties and may influence the availability of applied and mineralized soil N. This laboratory study (20°C) compared N cycling in two soils, a Wooster (fine, loamy Typic Fragiudalf) and a Hoytville (fine, illitic Mollic Epiaqualf) under continuous corn (Zea mays) production since at least 1963 with no-tillage (NT), minimum (CT) and plow tillage (PT) management. Fertilizer was added at the rate of 100 mg 15N kg–1–1 soil as 99.9% 15N as NH4Cl or Ca(NO3)2 and the soils were incubated in leaching columns for 1 week at 34 kPa before being leached periodically with 0.05 M CaCl2 for 26 weeks. As expected, the majority of the 15NO3 additions were removed from both soils with the first leaching. The majority of applied 15NH4+ additions were recovered as 15NO3 by week 5, with the NT soils demonstrating faster nitrification rates compared with soils under other tillage practices. For the remaining 22 weeks, only low levels of 15NO3 were leached from the soils regardless of tillage management. In the coarser textured Wooster soils (150 g clay kg–1), mineralization of native soil N in the fertilized soils was related to the total N content (r2 0.99) and amino acid N (r2 0.99), but N mineralization in the finer textured Hoytville (400 g clay kg–1) was constant across tillage treatments and not significantly related to soil total N or amino acid N content. The release of native soil N was enhanced by NH4+ or NO3 addition compared to the values released by the unfertilized control and exceeded possible pool substitution. The results question the use of incubation N mineralization tests conducted with unfertilized soils as a means for predicting soil N availability for crop N needs.  相似文献   

9.
Simple and rapid chemical indices of soil nitrogen (N)-supplying capacity are necessary for fertilizer recommendations. In this study, pot experiment involving rice, anaerobic incubation, and chemical analysis were conducted for paddy soils collected from nine locations in the Taihu Lake region of China. The paddy soils showed large variability in N-supplying capacity as indicated by the total N uptake (TNU) by rice plants in a pot experiment, which ranged from 639.7 to 1,046.2 mg N pot−1 at maturity stage, representing 5.8% of the total soil N on average. Anaerobic incubation for 3, 14, 28, and 112 days all resulted in a significant (P < 0.01) correlation between cumulative mineral NH4+-N and TNU, but generally better correlations were obtained with increasing incubation time. Soil organic C, total soil N, microbial C, and ultraviolet absorbance of NaHCO3 extract at 205 and 260 nm revealed no clear relationship with TNU or cumulative mineral NH4+-N. Soil C/N ratio, acid KMnO4-NH4+-N, alkaline KMnO4-NH4+-N, phosphate–borate buffer extractable NH4+-N (PB-NH4+-N), phosphate–borate buffer hydrolyzable NH4+-N (PBHYDR-NH4+-N) and hot KCl extractable NH4+-N (HKCl−NH4+-N) were all significantly (P < 0.05) related to TNU and cumulative mineral NH4+-N of long-term incubation (>28 days). However, the best chemical index of soil N-supplying capacity was the soil C/N ratio, which showed the highest correlation with TNU at maturity stage (R = −0.929, P < 0.001) and cumulative mineral NH4+-N (R = −0.971, P < 0.001). Acid KMnO4-NH4+-N plus native soil NH4+-N produced similar, but slightly worse predictions of soil N-supplying capacity than the soil C/N ratio.  相似文献   

10.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

11.
Nitrogen fertilizers promote denitrification   总被引:8,自引:0,他引:8  
A laboratory study was conducted to compare the effects of different N fertilizers on emission of N2 and N2O during denitrification of NO3 in waterlogged soil. Field-moist samples of Drummer silty clay loam soil (fine-silty, mixed, mesic Typic Haplaquoll) were incubated under aerobic conditions for 0, 2, 4, 7, 14, 21, or 42 days with or without addition of unlabelled (NH4)2SO4, urea, NH4H2PO4, (NH4)2HPO4, NH4NO3 (200 or 1000 mg N kg–1 soil), or liquid anhydrous NH3 (1000 mg N kg–1 soil). The incubated soil samples were then treated with 15N-labelled KNO3 (250 mg N kg–1 soil, 73.7 atom% 15N), and incubation was carried out under waterlogged conditions for 5 days, followed by collection of atmospheric samples for 15N analyses to determine labelled N2 and N2O. Compared to samples incubated without addition of unlabelled N, all of the fertilizers promoted denitrification of 15NO3 . Emission of labelled N2 and N2O decreased in the order: Anhydrous NH3>urea<$>\gg<$> (NH4)2HPO4>(NH4)2SO4≃NH4NO3≃NH4H2PO4. The highest emissions observed with anhydrous NH3 or urea coincided with the presence of NO2 , and 15N analyses indicated that these emissions originated from NO2 rather than NO3 . Emissions of labelled N2 and N2O were significantly correlated with fertilizer effects on soil pH and water-soluble organic C. Received: 17 January 1996  相似文献   

12.
 High molecular weight, anionic polyacrylamide (PAM) is currently being used as an irrigation water additive to significantly reduce soil erosion associated with furrow irrigation. PAM contains amide-N, and PAM application to soils has been correlated with increased activity of soil enzymes, such as urease and amidase, involved in N cycling. Therefore we investigated potential impacts of PAM treatment on the rate at which fertilizer N is transformed into NH4 + and NO3 in soil. PAM-treated and untreated soil microcosms were amended with a variety of fertilizers, ranging from common rapid-release forms, such as ammonium sulfate [(NH4)2SO4] and urea, to a variety of slow-release formulations, including polymerized urea and polymer-encapsulated urea. Ammonium sulfate was also tested together with the nitrification inhibitor dicyandiamide (DCD). The fertilizers were applied at a concentration of 1.0 mg g–1, which is comparable to 100 lb acre–l, or 112 kg ha–1. Potassium chloride-extractable NH4 +-N and NO3 -N were quantified periodically during 2–4 week incubations. PAM treatment had no significant effect on NH4 + release rates for any of the fertilizers tested and did not alter the efficacy of DCD as a nitrification inhibitor. However, the nitrification rate of urea and encapsulated urea-derived NH4 +-N was slightly accelerated in the PAM-treated soil. Received: 16 January 1998  相似文献   

13.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

14.
Soil mineral (or inorganic) nitrogen (SMN), which primarily exists as exchangeable and soluble ammonium (NH4+) and the nitrate (NO3?) ions, represents readily available nitrogen for plant growth. Over the years a 2M potassium chloride (KCl) solution has become the extraction solution of choice for extracting SMN. In the research and service laboratories, either distillation-titration method (DTM) or colorimetric method (CM) is virtually the standard to measure NH4+- and NO3?-N in the 2M KCl soil extracts. However, being a time-consuming and labor intensive method, DTM generally has a very low throughput. Likewise, CM is affected by interferences from pH variation, color, turbidity, presence of organic species, and some other constituents in the extracts. In contrast, diffusion conductivity method (DCM) is a less expensive and high throughput one, which is also relatively free from common interferences. In this study, we, therefore, compared the extraction efficiency of various KCl concentrations and performance of diffusion conductivity method (DCM) with DTM in measuring NH4+-N and NO3?-N in KCl extracts of 32 agricultural soils of Georgia. A 0.2M KCl solution extracted statistically similar amounts of NH4+-N and NO3?-N as did 2M KCl, suggesting that a 10-fold dilute KCl solution than the standard 2M KCl might be good enough to extract and estimate the most of SMN. For the analyses of NH4+- and NO3?-N in the KCl extracts, the DCM produced results statistically similar to those produced by DTM. The deviation between the results given by DCM and DTM was no more than ±10%. Thus, DCM appears to be an attractive alternative to the labor intensive and time-consuming DTM for measuring NH4+- and NO3?-N in the KCl extract of soils in the research and service laboratories.  相似文献   

15.
Summary A roller bed and rotary end-over-end shaker were compared for the extraction of mineral N from a variety of soil types; both were equally efficient with an optimum extraction time of 30 min. However, the roller bed permitted a greater operational capacity, a faster throughput of samples, and easier identification of sample bottles compared with the end-over-end shaker. More NH4 +-N and NO3 -N (P<0.001) was recovered from soil by 2 M KCl than by any other extractant, in a soil: extractant ratio of 1 to 5 (w:v), except water, which was equally efficient at removing NO3 -N from soils.  相似文献   

16.
 In less populated rural areas constructed wetlands with a groundfilter made out of the local soil mixed with peat and planted with common reed (Phragmites australis) are increasingly used to purify waste water. Particularly in the rhizosphere of the reed, nitrification and denitrification processes take place varying locally and temporally, and the question arises to what extent this type of waste-water treatment plant may contribute to the release of N2O. In situ N2O measurements were carried out in the two reed beds of the Friedelhausen dairy farm, Hesse, Germany, irrigated with the waste water from a cheese dairy and 70 local inhabitants (12 m3 waste water or 6 kg BOD5 or 11 kg chemical O2 demand (CODMn) day–1). During November 1995 to March 1996, the release of N2O was measured weekly at 1 m distances using eight open chambers and molecular-sieve traps to collect and absorb the emitted N2O. Simultanously, the N2O trapped in the soil, the soil temperature, as well as the concentrations of NH4 +-N, NO3 -N, NO2 -N, water-soluble C and the pH were determined at depths of 0–20, 20–40 and 40–60 cm. In the waste water from the in- and outflow the concentrations of CODMn, BOD5, NH4 +-N, NO3 -N, NO2 -N, as well as the pH, were determined weekly. Highly varying amounts of N2O were emitted at all measuring dates during the winter. Even at soil temperatures of –1.5  °C in 10 cm depth of soil or 2  °C at a depth of 50 cm, N2O was released. The highest organic matter and N transformation rates were recorded in the upper 20 cm of soil and in the region closest to the outflow of the constructed wetland. Not until a freezing period of several weeks did the N2O emissions drop drastically. During the period of decreasing temperatures less NO3 -N was formed in the soil, but the NH4 +-N concentrations increased. On average the constructed wetlands of Friedelhausen emitted about 15 mg N2O-N inhabitant equivalent–1 day–1 during the winter period. Nitrification-denitrification processes rather than heterotrophic denitrification are assumed to be responsible for the N2O production. Received: 28 October 1998  相似文献   

17.
 The effects of salt type and its concentration on nitrification, N mineralization and N2O emission were examined under two levels of moisture content in Yellow soil and Andosol samples as simulated to agriculture under arid/semi-arid conditions and under heavy application of fertilizer in a glass-house, respectively. The salt mixtures were composed of chlorides (NaCl and NH4Cl) or sulphates [Na2SO4 and (NH4)2SO4] and were added at various concentrations (0, 0.1, 0.2, 0.4 and 0.6 M as in the soil solution). These salts were added to non-saline Yellow soil at different moisture contents (45 or 40 and 65% of maximum water-holding capacity; WHC) and their effects on the changes in mineral N (NH4 +-N and NO3 -N) concentration as well as N2O emission were examined periodically during laboratory incubation. We also measured urease activities to know the effect of salts on N mineralization. Furthermore, Ca(NO3)2 solution was added at various concentrations (0, 0.1, 0.3, 0.5 and 0.8 M as in the soil solution) to a non-saline Andosol taken from the subsurface layer in a glass-house and incubated at different moisture contents (50% and 70% of WHC) to examine their effects on changes in mineral N. Nitrification was inhibited by high, but remained unaffected by low, salt concentrations. These phenomena were shown in both the model experiments. It was considered that the salinity level for inhibition of nitrification was an electric conductivity (1 : 5) of 1 dS m–1. This level was independent of the type of salts or soil, and was not affected by soil moisture content. The critical level of salts for urease activities was about 2 dS m–1. The emission rate of N2O was maximum at the beginning of the incubation period and stabilized at a low level after an initial peak. There was no significant difference in N2O emission among the treatments at different salt concentrations, while higher moisture level enhanced N2O emission remarkably. Received: 29 July 1998  相似文献   

18.
The short-term effects of excessive NH4+-N on selected characteristics of soil unaffected (low annual N inputs) and affected (high annual N inputs) by cattle were investigated under laboratory conditions. The major hypothesis tested was that above a theoretical upper limit of NH4+ concentration, an excess of NH4+-N does not further increase NO3 formation rate in the soil, but only supports accumulation of NO2-N and gaseous losses of N as N2O. Soils were amended with 10 to 500 μg NH4+-N g−1 soil. In both soils, addition of NH4+-N increased production of NO3-N until some limit. This limit was higher in cattle-affected soil than in unaffected soil. Production of N2O increased in the whole range of amendments in both soils. At the highest level of NH4+-N addition, NO2-N accumulated in cattle-affected soil while NO3-N production decreased in cattle-unaffected soil. Despite being statistically significant, observed effects of high NH4+-N addition were relatively weak. Uptake of mineral N, stimulated by glucose amendment, decreased the mineral N content in both soils, but it also greatly increased production of N2O.  相似文献   

19.
 We hypothesized that the integration of trees and shrubs in agricultural landscapes can reduce NO3 leaching and increase utilization of subsoil N. A field survey was conducted on 14 farms on acid soils in the subhumid highlands of Kenya, where there is little use of fertilizers, to determine the effect of vegetation types (VT) on soil NH4 + and NO3 to 4 m depth. The VT included maize (Zea mays) with poor growth and good growth, Markhamia lutea trees scattered in maize, natural weed fallow, banana (Musa spp.), hedgerow, and eucalyptus woodlot. The effect of VT on NH4 + was small (<1 mg N kg–1). NO3 within a VT was about constant with depth below 0.25 m, but subsoil NO3 varied greatly among VT. Mean NO3 -N concentrations at 0.5–4 m depth were low beneath hedgerow and woodlot (<0.2 mg kg–1), intermediate beneath weed fallow (0.2–0.7 mg kg–1), banana (0.5–1.0 mg kg–1) and markhamia (0.5–1.6 mg kg–1), and high beneath both poor (1.0–2.1 mg kg–1) and good (1.9–3.1 mg kg–1) maize. Subsoil NO3 (0.5–4 m) was agronomically significant after maize harvest with 37 kg N ha–1 m–1 depth of subsoil beneath good maize and 27 kg N ha–1 m–1 depth beneath poor maize. In contrast, subsoil NO3 was only 2 kg N ha–1 m–1 depth beneath woodlot and hedgerow. These results demonstrate that the integration of perennial vegetation and the rotation of annual and perennial crops can tighten N cycling in agricultural landscapes. Received: 8 July 1999  相似文献   

20.
15N studies were conducted using hydroponically grown tea (Camellia sinensis L.) plants to clarify the characteristics of uptake, transport and assimilation of nitrate and ammonium. From the culture solution containing 50 mg L-1 N03-N and 50 mg L-1 NH.-N, the uptake of NH3-N after 24 h was twice as high as that of NO3-N, while the uptake of N03-N from the culture solution containing 90 mg N03-N and 10 mg NH3-N was twice that of NH4-N. The presence of 0.4 mM Al had no significant effect on the N03-N and NH4-N uptake from the culture solutions containing 50 mg L-1 N03-N and 50 mg L-1 NH4-N, 90 mg L-1 N03-N and 10 mg L-1 NH4-N or 99 mg L-1 N03-N and 1 mg L-1 NH4-N. Transport of N03-derived N to young leaves was much more rapid than that of NH4-derived NO3 and NH4-derived N was largely retained in the roots and lower stem. Young and mature shoots separated from the roots absorbed more N03-N than intact plants. Nitrate assimilation occurred in both, roots and young as well as mature leaves. Internal cycling of N03-derived Nand NH4-derived N from one root part to another part was not appreciable after 28 h, suggesting that a longer of time is required for cycling in woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号