首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effectiveness of equivalent strip model calculating the horizontal ultimate bearing capacity of multi-story steel plate shear walls(SPSW)by using the software SAP2000 to make Pushover analysis was demonstrated by comparing the simulated values with results from experimental studies performed by different researchers.The effect of different slenderness ratios on the ultimate bearing capacity of four-story single-span SPSW and four-story three-span dual steel shear walls system subjected to the inverse triangular load was obtained by the verified analytical model,which was compared with the performance of corresponding bare frames.The slenderness ratio of 250~300 is suggested for the design of SPSW.  相似文献   

2.
输电钢管塔空间KK型管板连接节点极限承载力   总被引:1,自引:0,他引:1  
空间KK型管板连接节点作为输电钢管塔中最主要的节点型式,其安全性是整个塔架结构安全的重要保证。相比较于平面K型节点,在考虑实际结构中节点空间效应后的KK型节点的受力性能更为复杂。在平面K型管板节点的试验研究基础上,对两类空间KK型管板节点展开参数化分析,重点讨论了节点几何尺寸参数和主管轴压应力比等因素对节点极限承载力的影响变化规律。结合大量有限元参数分析所得计算结果,并综合考虑各种因素对节点极限承载力的影响,提出了空间KK型管板连接节点在主管管壁局部屈曲破坏模式下的极限承载力建议计算方法。  相似文献   

3.
高温下钢管约束型钢混凝土柱的受力性能   总被引:1,自引:0,他引:1  
火灾下无防火保护的结构构件温度会迅速上升,从而造成钢材和混凝土的强度明显下降。为了研究火灾下钢管约束型钢混凝土柱的受力性能,考虑火灾下钢管约束型钢混凝土柱的不均匀温度分布及温度对材料力学性能的影响,提出了火灾下受轴心荷载作用的钢管约束型钢混凝土柱承载力的计算方法。利用有限元软件ABAQUS对提出的计算方法进行了验证,结果吻合较好。进而采用该计算方法对影响高温下承载力的参数进行了分析,研究表明:随着构件截面尺寸的增加以及混凝土强度和钢材强度的提高,构件的承载力逐渐增加,而钢管壁厚的改变对承载力并无太大影响。利用有限元软件ABAQUS分析了荷载比、构件尺寸、钢管壁厚等因素对构件耐火极限的影响,发现耐火极限随着荷载比和钢管壁厚的增加而减小,随着构件尺寸的增加而增大。  相似文献   

4.
Two monolayer concrete frames with the same reinforcement, KJ1 and KJ2, were designed. KJ1 was designed to simulate low cyclic reversed loading test under weak earthquake. Besides, the fire response test, including temperature rising and lowing, was made by fixing the axial compression ratio of the column. For KJ2, the fire response test at the fixed axial compression ratio was made. The deformation response of the concrete frames in fire was studied. Comparative analysis of the apparent phenomenon, temperature curves, bearing capacity change of the frames were made based on the test results of KJ1 and KJ2. According to the simplified temperature distribution, the ultimate bearing capacity of the column under the high temperature was preliminarily determined. It is illustrated that the calculation results and finally test phenomenon are consistent according to the simplified section.  相似文献   

5.
With the rapid development of power industry in China,the traditional single angle steel members of the transmission tower cannot meet the requirements of high voltage, multi-loop, high-load and so on. By doing experiments with double-angle cruciform section, whose specification are L160×12,L160×14,L160×16, we analyze the ultimate bearing capacity of main components which constitute UHV transmission tower. Meanwhile, we use the FEM to deal with the influence of the parameters including different ratios of slenderness, different number and location of fill plate, etc. The calculation results are comperred with each other based on some general codes. The results show that, for some test pieces with certain ratios of width to thickness, other codes and Eurocode 3 code are not safe, but ASCE10-97 code is completely unsafety. So we propose the modifier formulas of calculated length. The best way of arranging plates is uniform layout and the best space between plates is existed.  相似文献   

6.
To investigate mechanical behavior and seismic behavior of concrete filled steel tubular column node (CFSTCN) in space truss structure, both full-scale test and Finite Element Method (FEM) were employed. The test load was 1.6 times of design load and by incremental step loading. Meanwhile, stress and deformation in CFSTCN were observed to monitor bearing capacity of the node. The results show that steel tubular works in elastic state and a small part of concrete beyond of compressive stress limits; steel tube and concrete adhesive well. The hysteretic energy dissipation capacity and failure mode under cyclic loading were revealed by nonlinear FEM. weakest position and ultimate bearing capacity of the node were obtained from FEM results. The method of combining full-scale test and FEM can well reveal the mechanical behavior and the seismic behavior of the node.  相似文献   

7.
8.
For the convenience of industrialized production and site operation,specification design of PPCRP (precast prestressed concrete ribbed panels) is discussed. In order to obtain ultimate bearing capacity,bending rigidity and crack resistance,four PPCRP with two types of spans are studied,and the results show that PPCRP can satisfy the requirements of bearing capacity in construction phase and can serve as stay-in place formwork. To verify the mechanical property,shear behavior on contact interface of composite member and moment redistribution factor of continuous composite member,two single-span composite members and one two-span continuous composite member are studied. It is indicated that computational method for bearing capacity of composite member can be the same as cast-in-situ concrete slab. Besides,section strain analysis for composite member in two-loading is conducted,which suggests that thickness of bottom board can be used as calculated height with the consideration of two-loading.  相似文献   

9.
RC加气混凝土砌块组合墙加固框架抗震性能试验研究   总被引:1,自引:0,他引:1  
RC加气混凝土砌块组合墙(简称组合墙)是由混凝土梁柱网格与加气混凝土砌块组合形成的一种轻型网格式抗震墙,可用于框架结构的抗震加固。笔者进行了1/2比例空框架试件、组合墙试件和组合墙加固框架试件的低周反复荷载试验,分析了各试件的主要破坏过程,对比了组合墙加固框架前后试件承载能力、刚度等抗震性能变化。试验结果及分析表明:组合墙加固框架后承载力、抗侧刚度有较大幅度提高,中大震及大震阶段其承载力、等效刚度约为空框架和组合墙单独受力之和的0.9倍,两者具有良好的协同工作性能;加固试件的破坏过程基本上遵循填充砌块混凝土框格外框架的破坏顺序,能够发挥组合墙多重抗震防线的特点,采用RC加气混凝土砌块组合墙加固框架是一种较为经济实用的加固方法。  相似文献   

10.
The mechanism and lateral bearing capacity of reinforcement concrete (RC) frame with dry stack in filled panel (DSIP) were investigated using quasi static experiments and finite element models. According to the parallel model and equivalent strut model, the lateral bearing capacity of RC frame and DSIP were researched separately. Results show that: 1) The plain stress element and interface element are applicable in finite element (FE) model analysis. According to the FE model, the failure of RC frame with DSIP is caused by the damage of frame; 2) Lateral bearing capacity of DSIP is mainly from the friction between bricks in the panel, which can be divided into 3 stages: constant stage, increasing stage and ultimate stage; 3) Equations for lateral bearing capacity of DSIP were proposed and verified by FE model results.  相似文献   

11.
On the basis of Hollow Flange Beam (HFB) which is proposed by Australian researchers, a new pattern triangle hollow flange beam (THFB) is presented. According to the experimental test and finite element simulation, the failure processes of THFB and traditional I-beam under concentrated load are compared, and then the obvious differences between the failure modes of these two type beams are founded. The local buckling is easily occurred for the THFB, while overall instability is easily occurred for traditional I-beam, and THFB possesses have better bending performance and twist resistance than those of traditional I-beam. with the experiments, finite element analysis is carried out by FE software ANSYS, and the FE results agree with the test results. Based on FE models, the parameter analysis is carried out for THFB. The parameters mainly include the thickness of top flange, the width of top flange, the thickness of web and the yield strength of steel. The change rule of the bearing capacity of THFB with different parameters can be achieved by parameter analysis. Finally, based on the above results, the applicability of the calculation formula of Eurocode3 to compute the bearing capacity of THFB is discussed. The results show that it is safe and reliable to adopt the calculation formula of Eurocode3 to compute the bearing capacity of THFB, Whilst the estimation is relatively conservative.  相似文献   

12.
The existing problems in calculation approach for multi-story and high-rise steel frame structure are summarized. As the shearing deformation is considered, the analysis methods for steel frame structure are put forward based on the structural ultimate bearing capacity, which is on the basis of second order inelasticity analysis for steel structure. In the approach, the tangent module brought forward by Bleich, F. is used, the second-order refined plastic hinge method presented by Liew, J. Y. R. is modified.  相似文献   

13.
Bearing capacity behavior of roll forming filling screw pile (screw pile for short) is investigated through numerical calculation and static load test. The influence of pile-type parameters, such as width of thread tooth and thread pitch, on the ultimate bearing capacity of crew pile is studied; furthermore, the bearing capacity behavior of screw pile and that of pile with the same diameter are compared and analyzed through static load test. The results show that the ultimate bearing capacity of screw pile is a bit higher than that of pile with the same outside diameter; width of thread tooth has a distinct effect on ultimate bearing capacity which increases with the increment of width of thread tooth. When the screw pile is tested under light load, the resistance on pile side is distributed along screw pile, and tip resistance is small, but the resistance rises considerably with load increasing. Besides, the design formula of bearing capacity of screw pile is proposed.  相似文献   

14.
The regular pattern of second order effects according to numerical analysis results in non-sway closed cell frame columns is reviewed . The second order internal force equation and additional displacement method based on the turn-angle equation are provided in second order effects analysis. The analytic solution of second order effects in non-sway closed cell frames is solved by this method, which has proved that the regular pattern of second order effects in non - sway closed cell frame columns is exact.  相似文献   

15.
In order to study the mechanical behavior of corroded reinforced concrete beams strengthened with bolted steel plates, this paper designed 12 reinforced concrete beams. These beams were corroded by using accelerated electrochemical corrosion method with a designed corrosion ratio of 10%. The pre-compression experiments were performed for all RC beams before strengthening and the maximum crack width was controlled as 0.2 mm. According to the thickness of concrete cover, the beams were divided into 3 groups. Each group was composed of one comparative beam and three tested beams strengthened by steel plates bolted with study according to the thickness of steel plates which were 3 mm, 4 mm and 5 mm, respectively. It was shown that the strain distributions along the height of the strengthened beams at middle-span were in good agreement with the plain section assumption basically. The serviceability performances of corroded RC beams were significantly improved and these ultimate bearing capacities increased obviously. The steel plate bolted with stud effectively reduced the crack width and the extension height of reinforced concrete beams. It was indicated that an increase of steel plates with 35 mm resulted in a decrease of deflection by 13%51% when beams had the same thickness of concrete cover and corrosion ratio. Influence of the thickness of concrete cover on the ultimate bearing capacity was not obvious.  相似文献   

16.
In order to make fire resistance design of high strength steel columns in building structures, the numerical calculation method on load bearing capacity of high strength steel columns at elevated temperature was investigated. By taking the mechanical property of high strength steel at elevated temperature into consideration, extension was made on the inverse calculation segment length method and the program to compute the load bearing capacity of high strength steel columns at elevated temperature was performed. The program was adopted to compute the load bearing capacity. The results obtained by the program and the finite element analysis were compared and good agreement had been found. The influence of magnitude, distribution mode of residual stress and initial geometry imperfection on ultimate load bearing capacity was analyzed by employing the program. It is shown that the extended method can be is shown used to calculate the load bearing capacity of high strength steel columns at elevated temperature; the magnitude and distribution mode of residual stress had little influence but the geometry imperfection have significant influence on ultimate load bearing capacity.  相似文献   

17.
In this paper, based on the structure characters and load applying means, a method called as curvature force method is put forward and proved in the nonlinear analysis of bonded prestressed concrete frame. Based on the nonlinear program, the simulation calculation was carried out on test results of two prestressed concrete frames by this method. The results from calculation are identical with the experiment ones. So it may be added to the methods for the nonlinear analysis of prestressed concrete frame.  相似文献   

18.
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.  相似文献   

19.
Compared with column bored pile,the bored pile with branches and plates is a new type of piles with higher bearing capacity and lower settlement.Field comparative tests related to ultimate bearing capacity of both the bored piles with branches and plates and column bored piles at the same site in Huzhou city of province Zhejiang in China were studied through self-balanced method under static pressure.The results testify that,compared with column bored pile under the same geological conditions,the bored pile with branches and plates can obtain better economic benefit such as: increasing ultimate compressive bearing capacity and ultimate extraction bearing capacity used per cubic meter concrete over 75.3%and 118.9%respectively,while dropping consumption of reinforced concrete upwards of 41.9%and 44.1% respectively,reducing settlement and pile length under the same loading.The tests will present an objective reference to the new type of piles in both theoretic study and application to analogous engineering.  相似文献   

20.
The climate has a great impact on highway bridge rubber bearings than on building rubber bearings. In order to study the change of the mechanical properties during the life of the plain chloroprene rubber bearings of highway bridge under freeze-thaw cycle condition, the plain chloroprene rubber bearings were processed 25, 50, 75, 100 times by freeze-thaw cycle in the standard freeze-thaw chamber, then the axial compression tests were carried. The changes of the performance indicators in the bearing capacity , the ultimate compressive strength, vertical stiffness, elastic modulus under different freeze-thaw cycles were analyzed comparatively. The results show that the plain chloroprene rubber bearings are more prone to brittle failure after the freeze-thaw cycle, and the failure phenomena of steel plate exposing or cracks is more serious than the phenomena of the standard specimen. With the increase of the number of freeze-thaw cycle, the ultimate bearing capacity, ultimate compressive strength and compressive elastic modulus of the plain chloroprene rubber bearings decrease. The attenuation formula and decay curve in 50 years of ultimate compressive strength and elastic modulus of compression are analyzed by least square method, the trends of change are both in line with the exponential function. The mechanical properties of plain chloroprene rubber bearings of highway bridge significantly decreased under freeze-thaw cycle condition. therefore, the temperature ranges of plain chloroprene rubber bearings of highway bridge should be strictly controlled, and some suggestions, such as increasing its minimum applicable temperature, usng the natural rubber bearings as much as possible in cold regions, have been given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号