首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

2.
以竹热解气化产生的炭副产物为原料,高分子化改性焦油等为黏结剂,经液压成型、热解交联、水蒸气活化制备竹质成型活性炭,分析了不同黏结剂的成型机制,考察了黏结剂类型、改性焦油添加量、活化温度、活化时间对活性炭性能的影响,结果发现:焦油经芳香化交联改性后,相对分子质量和热稳定性提高了,对竹炭孔道的堵塞作用减轻了,炭颗粒间的黏结和热解交联作用增强了,可制备高性能的竹质成型活性炭;以40 g竹炭粉为原料,在改性焦油添加量12 g、炭化温度550℃、炭化时间90 min、水蒸气活化温度850℃、水蒸气活化时间80 min的条件下制得成型活性炭,其碘吸附值1 232 mg/g,亚甲基蓝(MB)吸附值240 mg/g,强度91%,得率48.5%,比表面积和总孔容分别为1 157 m2/g和0.478 1 cm3/g,对甲苯和四氯化碳的吸附率分别为385 mg/g和75.2%,且成型活性炭的微孔孔容与甲苯和四氯化碳吸附率呈正比关系。  相似文献   

3.
以杉木屑为原料,三聚氰胺固体废弃物(OAT)为氮源,基于碱/尿素体系溶解纤维素,通过一步热解制备氮掺杂活性炭,并考察活化温度和OAT加入量对活性炭的吸附性能和电化学性能的影响。通过X射线光电子能谱(XPS)和比表面积分析仪分析材料的表面结构和孔结构;采用循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)等测试手段表征其电化学性能。研究结果表明:随着OAT质量分数的增加,活性炭样品得率和吸附性能先增加后减小;OAT的添加有利于提高氮掺杂活性炭的得率、氮含量、吸附性能和电化学性能;炭材料的比表面积及其孔隙结构促进活性炭样品电化学性能的提升。当活化温度900℃,OAT质量分数为15%下,制备的氮掺杂活性炭的得率为34.2%,碘吸附值为1 116 mg/g,亚甲基蓝吸附值为165 mg/g,比表面积为1 324 m2/g,含氮量3.5%。在6 mol/L KOH电解液中,当电流密度1 A/g时,比电容可达193 F/g。  相似文献   

4.
以桉树锯末和磷酸为原料制备了颗粒活性炭,研究浸渍比、活化温度、活化时间等对产品得率、强度和吸附性能的影响。实验得到最佳工艺条件为:磷酸与原料浸渍比为2∶1,温度300℃,预处理1 h,机械成型后,再以10℃/min升到活化温度450℃,活化1 h。此条件下,制备得到的活性炭性能指标为:强度95%,亚甲基蓝吸附值172.5 mg/g,碘吸附值790 mg/g,A法焦糖100%,得率40%左右。  相似文献   

5.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响。综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性炭的比表面积2 312 m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg/g;孔径分布以微孔为主;表面含有羟基(—OH)、活泼氢(—H)等基团。  相似文献   

6.
以椰壳活性炭生产过程中产生的粉末碎炭为原料,羧甲基纤维素钠为黏结剂,无机助剂硅酸盐为增黏剂,按一定质量比混炼、挤条、成型,再经过热处理制得耐水高强度柱状颗粒活性炭。试验考察了助剂添加量、热处理温度、热处理时间等因素对产品炭的碘吸附值、亚甲基蓝吸附值和耐磨强度的影响。随着硅酸盐添加量的增加,颗粒活性炭的耐磨强度呈增大趋势;随热处理温度的升高,颗粒活性炭的碘吸附值和亚甲基蓝吸附值不断增加。但另一方面,随热处理时间的延长,耐磨强度呈逐渐下降趋势。利用红外分析仪、综合热分析仪和全自动比表面积与孔隙分布分析仪对颗粒活性炭进行分析。在羧甲基纤维素钠用量2%、助剂添加量20%、热处理温度350℃、热处理时间0.5 h条件下,制备出的颗粒活性炭碘吸附值、亚甲基蓝吸附值和耐磨强度分别为815.37mg/g,163.50 mg/g和99.72%,并且具有良好的耐水能力。  相似文献   

7.
以木屑气化剩余炭粉为原料,通过添加活化助剂次氯酸钙和使用黏结剂羧甲基纤维素钠、沥青、酚醛树脂成型,经炭化、水蒸气活化,制得成型活性炭。考察了黏结剂种类和添加量、活化助剂添加量、水蒸气活化条件对制备活性炭性能的影响,结果发现:沥青、酚醛树脂作黏结剂时,单独和配合使用都可以制备性能较好的成型活性炭;活化助剂的添加有利于提高制备活性炭的吸附性能,但会影响活性炭强度和得率。当活化助剂添加0.3 g、水蒸气活化温度850℃、水蒸气活化时间45 min、水蒸气流量1.5 mL/min时,沥青(添加量25 g)为黏结剂制备的活性炭AC1、酚醛树脂(添加量6 g)为黏结剂制备的活性炭AC2、沥青(添加量10 g)和酚醛树脂(添加量3 g)共为黏结剂制备的活性炭AC3,3种样品的碘吸附值最高超过900 mg/g,亚甲基蓝吸附值最大达180 mg/g,强度最高为99%,得率最高为32.9%;活性炭的微孔率最高大于83%,比表面积和总孔容积最大达697.04 m2/g和0.38 cm3/g。  相似文献   

8.
以硬杂木龙凤檀的加工剩余物为原料,研究了磷酸活化法的活化温度、磷酸质量分数和浸渍比对龙凤檀活性炭吸附性能的影响,通过N2吸附-脱附等温线对活性炭的结构进行分析,并根据吸附理论和DFT孔径分布图,拟合计算出活性炭有效孔道所占的孔容积与液相吸附性能(碘吸附值、亚甲基蓝吸附值和焦糖脱色率)的构效关系。研究结果表明:在磷酸质量分数60%、磷酸溶液与龙凤檀浸渍比3∶1(mL∶g)、活化温度500℃、活化时间120 min的条件下,磷酸活化法制备的龙凤檀活性炭具有最佳的吸附性能和优异的孔隙结构,碘吸附值为841 mg/g,亚甲基蓝吸附值为270 mg/g,焦糖脱色率为120%,比表面积为1 516 m2/g,总孔容为1.145 cm3/g,均优于软杂木杉木制备得到的活性炭。应用密度泛函理论(DFT),计算出龙凤檀活性炭不同孔径区间对应的孔容积,经过理论分析和拟合计算,发现碘吸附值与孔径在1.0~2.7 nm之间的孔容积、亚甲基蓝吸附值与孔径在1.7~5.0 nm之间的孔容积、焦糖脱色率与孔径在2.7~6.3 nm之间的孔容积有着很好...  相似文献   

9.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响.综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性碳的比表面积2 312m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg,/g;孔径分布以微孔为主;表面含有羟基(-OH)、活泼氢(-H)等基团.  相似文献   

10.
以杉木屑为原料,在不额外添加粘结剂的工艺下,采用磷酸活化法制备自成型颗粒活性炭,并对其活化工艺、孔隙结构和甲烷吸附性能进行了分析。结果表明:随着活化温度的升高,颗粒活性炭的吸附性能先升后降,450℃时吸附性能最佳,强度不断升高;浸渍比的增加有利于颗粒活性炭吸附性能的提高,不利于其强度的增大。氮气吸附等温线和压汞法分析表明:颗粒活性炭具有发达的微孔、中孔和大孔结构,浸渍比的增加有利于颗粒活性炭比孔容积的增加,不利于堆积密度和表观密度的增加。在活化温度450℃,压力3.4 MPa时单位质量和单位体积的颗粒活性炭的甲烷吸附值在浸渍比1.25时达到最大,分别为125.6 m L/g和115.2 L/L。  相似文献   

11.
竹材是重要的林业可再生资源,以竹材代替木材制备活性炭可节省大量木材。以竹粉为原料,经磷酸活化成型后进行水蒸气二次活化,在不同工艺条件下制备了高吸附性能活性炭。通过碘吸附值、亚甲基蓝吸附值、N_2吸附-脱附等温线、二硫化碳动态吸附量等对所制活性炭的性能进行表征。结果表明:在磷酸浸渍比1.2∶1、活化时间20 min、活化温度450℃,水蒸气活化温度875℃、活化时间1 h、流量3.0 m L/min条件下,制得的活性炭BET比表面积为1 264.60 m~2/g、总孔容积为1.227 cm~3/g、平均孔径为3.88 nm、碘吸附值为1 452.96 mg/g、亚甲基蓝吸附值为307.5 mg/g、强度为91.76%、得率为30.42%;在动态干燥和30%相对湿度条件下,对二硫化碳的单位质量吸附量分别为0.416和0.390 g/g。活性炭对CS2的吸附能力主要与活性炭的孔结构有关,微孔发达、平均孔径小、碘吸附值高的活性炭更有利于CS2的吸附。由于竹材表观密度相对较低,且受到竹材自身组分的限制,所制活性炭的强度低于椰壳活性炭。  相似文献   

12.
以超声波浸提法提取阿拉伯半乳聚糖后的兴安落叶松锯末为原料,KOH为活化剂,惰性气氛条件下程序升温活化,研制高比表面积活性炭.系统分析了碱料比、活化温度、活化时间、活化剂加入方式与种类、预炭化对活性炭比表面积、碘吸附值和得率的影响.以低温液氮吸附分析了活性炭的比表面积,通过苯酚的等温吸附测试了活性炭的吸附性能.结果表明浸提锯末为制造高比表面积活性炭的适宜原料,在最佳条件500℃预炭化1 h,750℃活化1 h,固体KOH为活化剂,碱料比41(质量比)时制得的活性炭比表面积为2 659.4 m2/g,对苯酚的吸附容量为570 mg/g.  相似文献   

13.
以玉米芯木质素为原料,采用磷酸活化法制备木质素基活性炭;并以亚甲基蓝吸附值为考察指标,通过Plackett-Burman设计、最陡爬坡实验和中心复合设计方法,探究了不同工艺条件在活性炭制备过程中的交互作用及最优工艺参数。结果发现:Plackett-Burman设计筛选得到的3个最重要因素分别为浸渍比、活化温度和活化时间;通过最陡爬坡实验确定了其最佳中心点区域;中心复合设计(CCD)和响应面分析(RSM)得到的最佳工艺条件为浸渍比3∶1(g∶g)、活化温度563℃和活化时间2.75 h。通过验证实验表明:在上述优化工艺及磷酸质量分数60%、浸渍时间12 h、浸渍温度90℃条件下,木质素基活性炭的孔径主要集中在2~10nm,BET比表面积为1 436 m2/g,总孔容为1.041cm3/g,微孔孔容为0.385 6cm3/g,亚甲基蓝吸附值为240 mg/g。  相似文献   

14.
以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响.通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优.制备出的活性炭比表面积为3 360 m2/g,总孔孔容为1.798 cm3/g,平均孔径为2.140 nm,对碘的吸附性能为2809 mg/g,对亚甲基蓝溶液的吸附性能为675mg/g.  相似文献   

15.
以林业废弃物杉木树皮作原料,通过低温炭化和KOH高温活化两步法制备了具有高表面积和孔隙率的杉木树皮基活性炭并应用于超级电容器电极材料。以碱炭比和活化温度为试验因素,以电流密度0.5 A/g下的质量比电容为响应值,进行中心复合设计(CCD)和响应面分析。研究结果表明:杉木树皮基活性炭的比表面积最高可达1 522 m2/g,最大孔容可达0.84 cm3/g,此时平均孔径为1.12 nm,且同时存在大量的中孔和微孔。碱炭比和活化温度的交互作用对比电容的影响显著,响应面法优化得到杉木树皮基活性炭最佳制备工艺为:碱炭比值为3,活化温度605℃,此条件下炭材料的比电容为185.7 F/g。对优化条件下制备的活性炭进行电化学性能测试发现:在0.5 A/g条件下的最大比电容为188 F/g,且具有良好的倍率性能(85.1%)。  相似文献   

16.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

17.
选择了水蒸气活化椰壳活性炭(AC-11、AC-12、AC-13),磷酸活化粉末状活性炭(AC-21、AC-22),以及KOH活化石油焦高比表面积活性炭(AC-31、AC-32)7种以常见方法制备的,比表面积在800~3 500 m2/g范围的活性炭,研究了2种I2/KI质量比对活性炭碘吸附值测定结果的影响,并分析了活性炭比表面积和孔隙结构对碘吸附值的影响。研究结果显示:活性炭的比表面积越大、中孔越发达、中孔分布越宽,I2/KI质量比对活性炭碘吸附值的影响就越大,m(I2)∶m(KI)为1∶1.5下测试样品AC-31的碘吸附值与其在m(I2)∶m(KI)为1∶2条件下的差值能达到140 mg/g;对于碘吸附值在800 mg/g左右的微孔型活性炭AC-13,2种比例测试得到的差值几乎可以忽略不计,也就是说旧版和新版的木质和煤质活性炭标准得到的活性炭碘吸附值差别很小。在活性炭碘吸附值测试条件下,吸附碘有效孔隙主要集中在0.8~1.5 nm之间。对于椰壳活性炭等微孔型活性炭,其比表面积...  相似文献   

18.
KOH活化制备高比表面积竹活性炭研究   总被引:9,自引:0,他引:9  
研究了KOH浸渍量、活化温度、活化时间等因素对活性炭收率、微孔结构和吸附性能的影响,结果表明:当碱,竹比为0.7,炭化温度为500℃,炭化时间为1h,活化温度为800℃,活化时间为20min时,所制得的活性炭的微孔比表面积达2492m^2/g、碘吸附值2382mg/g、亚甲基蓝吸附值558mg/g。  相似文献   

19.
以碱木糖渣为原料,磷酸为活化剂,经预处理后活化,制备高吸附性能活性炭。考察了不同条件对活性炭吸附性能的影响,并结合N2吸附-脱附等温线对其孔结构进行表征。结果表明,当浸渍比为2.0∶1,预处理温度和时间分别为270℃和60 min,活化温度和时间分别为400℃和90 min时,制得的活性炭得率为36.36%,亚甲基蓝吸附值360 mg/g,碘吸附值1 142 mg/g,焦糖脱色率120%,比表面积1 850.6 m2/g,总孔容积1.48 cm3/g,中孔孔容0.81 cm3/g,平均孔径3.2 nm。  相似文献   

20.
选用低温竹炭为原料、氢氧化钾为活化剂,制备不同炭碱比和不同活化时间的竹活性炭。运用傅立叶红外光谱议(FTIR)、比表面积测定仪(BET)等仪器对竹活性炭表面官能团、比表面积和孔径结构及比电容进行了测试和分析。结果表明,炭碱比1:4、活化温度700℃、活化时间3h条件下制备的竹活性炭,比表面积为2897.7m2/g,总孔容为1.340cm3/g,平均孔径为2.59nm,亚甲基蓝吸附值为27.7ml/0.1g,碘吸附值为1920mg/g,作为超级电容器(EDLC)的电极,其比电容为114.4F/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号