首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过对红花大金元和K 326 2个烤烟品种,经3个施氮量处理后的大田生长期烟叶中α-淀粉酶、β-淀粉酶活性和烟叶淀粉积累的研究表明:大田生长期烟叶中α-淀粉酶活性移栽后迅速升高,至移栽后40d达到最高峰,然后迅速下降,移栽后60d至成熟趋于稳定.β-淀粉酶活性变化规律与α-淀粉酶活性变化一致.移栽后40d烟叶淀粉积累很少,移栽后40~60d,烟叶淀粉积累速度最快,移栽后60d至成熟,淀粉积累速度开始减慢.不同施氮量对淀粉酶活性影响明显,对淀粉含量影响不明显.  相似文献   

2.
在讨论α-淀粉酶活力稳定性的基础上,进行α-淀粉酶催化芭蕉芋淀粉合成烷基糖苷单因素试验,分析淀粉浓度、酶浓度、反应时间对产物产率的影响,同时设计了三因素三水平的正交试验,确定α-淀粉酶催化芭蕉芋淀粉合成烷基糖苷的最优条件,并对产物做了定性与定量的分析。结果显示,α-淀粉酶催化芭蕉芋淀粉在温度为50℃,pH为5,甲醇浓度为40%(V/V)下酶活力保持较好。α-淀粉酶催化芭蕉芋淀粉合成烷基糖苷的最优条件为:淀粉浓度150g/L,酶浓度138U/mL,时间18h,在此条件下最终产物得率为15.94%,产物主要由甲基葡萄糖苷和甲基麦芽糖苷组成,且经过葡萄糖淀粉酶酶解转化得到最终甲基葡萄糖苷总量为1.16mg/mL。  相似文献   

3.
[目的]研究α-淀粉酶预处理城市生活垃圾后对厌氧消化产气和产甲烷的影响。[方法]采用单因素试验方法,用不同α-淀粉酶添加量、水解温度、水解时间和底物浓度预处理城市生活垃圾,考察经过预处理后的生活垃圾再进行中温厌氧消化对产气和产甲烷情况的影响。[结果]通过α-淀粉酶预处理后比不经过任何处理的效果更显著,且得到利用α-淀粉酶预处理城市生活垃圾来强化厌氧消化的适宜条件为:酶用量100U/gVS、水解温度50℃、水解时间1h、底物浓度为8%。[结论]试验为进一步优化厌氧消化工艺提供了基础数据。  相似文献   

4.
α-淀粉酶和糖化酶协同酶解马铃薯淀粉的工艺条件优化   总被引:1,自引:0,他引:1  
【目的】探讨α-淀粉酶和糖化酶协同酶解马铃薯淀粉的工艺条件,为降低微藻生产生物柴油成本提供参考。【方法】采用α-淀粉酶和糖化酶协同酶解马铃薯淀粉,以葡萄糖含量为测定指标,选取反应温度、底物质量浓度、加酶量(m(α-淀粉酶)∶m(糖化酶)=3∶1)、反应时间4个影响因素,进行L25(54)正交试验,确定最佳酶解工艺条件;采用高效液相色谱法(HPLC)、电子扫描电镜(SEM)、X射线衍射(XRD)法对酶解产物的物理特性进行分析。【结果】最佳酶解工艺条件为:反应温度80℃、底物质量浓度0.1 g/mL、加酶量为干基底物淀粉质量的0.6%、反应时间4 h、反应pH 4.0,在此条件下,马铃薯淀粉水解液中葡萄糖含量最高,为802.9 g/L。HPLC、SEM、XRD测定结果表明,酶解产物中葡萄糖所占比例最高,酶解未破坏马铃薯淀粉晶型结构,酶解作用只在淀粉表面发生。【结论】得到了α-淀粉酶和糖化酶协同酶解马铃薯淀粉的最佳工艺条件,为微藻生产生物柴油提供了较好的碳源,节约了生产成本。  相似文献   

5.
6.
 通过对K326和红花大金元(HD)的中部烟叶在烘烤过程中的α-淀粉酶活性、β-淀粉酶活性和淀粉含量的变化规律的研究表明:烘烤过程中烟叶的α-淀粉酶活性有3个高峰值,β-淀粉酶活性有两个高峰值。淀粉含量在烘烤开始后迅速下降,HD淀粉含量平均值从39.2%下降到9.71%,K326平均值从 25.32%下降到7.03%,48 h后略有回升(回升约3%),84 h后又继续下降至最低点(HD降至7.33%,K326降至6.4%). K326和HD的淀粉含量变化规律基本上相同。在烘烤开始到36 h,HD的淀粉含量与β-淀粉酶活性有显著负相关,相关系数r=-0.969(r0.05=0.95);K326淀粉酶活性和淀粉含量没有明显的相关性。  相似文献   

7.
β-淀粉酶(BAM)家族是催化植物淀粉转化为麦芽糖的重要酶,在调控植物生长发育和非生物胁迫耐受过程中有重要作用.为了解锥栗ChBAM基因家族的结构和表达特征,对ChBAM进行了全基因组鉴定和进化分析,并研究了ChBAM在不同组织、果实发育和种子萌发期间的表达模式.结果表明,鉴定出9个ChBAM基因,均具有典型的Glyc...  相似文献   

8.
贺胜英  唐湘华  洪涛  黄遵锡 《安徽农业科学》2010,38(20):10509-10511
概述了耐酸性α-淀粉酶的产生菌的来源、先进的粗酶分离纯化技术以及酸性α-淀粉酶的特性,介绍了国内外获得高产酶菌株的研究进展并阐述了耐酸性α-淀粉酶的应用潜力和开发前景。  相似文献   

9.
α-淀粉酶固定化的研究   总被引:2,自引:0,他引:2  
综述了固定化酶的优越性,酶的固定化的方法分类以及不同方法的优点和缺点。以甘蔗纤维素衍生物为载体,用共价键结合法固定α-淀粉酶。根据温度、pH值、α-淀粉酶的浓度以及α-淀粉酶与甘蔗纤维素衍生物载体的配比对α-淀粉酶固定的影响,通过正交试验得到最佳固定条件为:温度60℃,pH值为6.0,α-淀粉酶的浓度为60U/ml,α-淀粉酶与甘蔗纤维素衍生物载体的配比为50ml∶1g。缓冲溶液为柠檬酸-磷酸氢二钾缓冲液。通过吸光度法测定所得固定化酶的活力为34.77U/g固定剂。测得米氏常数为12.88g/L,半衰期为3.17h,固定化酶在使用过程中没有α-淀粉酶脱离在产品中,所以可以减少额外的加工费用,同时可以循环使用。  相似文献   

10.
家蚕丝素固定化α-淀粉酶的制备及其理化特性   总被引:4,自引:0,他引:4       下载免费PDF全文
脱胶蚕丝用稀碱溶液处理后制成多孔的碱化丝素,经物理吸附方法固定α-淀粉酶,制得碱化丝素固定化酶.每克碱化丝素固定化酶的总活力为439.81 U,固定化酶活力回收率为48.33%,活力表现率为74.18%.同样,蚕丝经高浓度氯化钙溶液溶解、脱盐等处理后制成丝素粉末,经吸附后用戊二醛为交联剂固定了α-淀粉酶,制成粉末状丝素固定化酶.每克粉末状丝素固定化酶的总活力为509.09 U,活力回收率为58.33%,活力表现率为83.45%.经对固定化酶性质的研究表明:碱化丝素和丝素粉末均能较好地固定α-淀粉酶;最适温度比游离酶升高了10 ℃;最适pH降低了0.8~1.0个单位,固定化酶具有较长的操作半衰期(26~38 d)、较强的抗蛋白质变性剂(8 mol/L尿素溶液中的活力在80%以上)和贮存稳定性(贮存60 d后,其活力大于50%);实验还发现:在制备固定化淀粉酶时,酶的最适浓度为2.8~3.2 g/L,戊二醛的最适浓度为0.25%.  相似文献   

11.
为探讨不同活力玉米种子田间发芽成苗率存在明显差异的生理原因,测定了不同环境条件下玉米种子发芽期间蛋白酶和α-淀粉酶的活性.结果表明,种子活力对玉米籽粒蛋白酶和α-淀粉酶活性的影响因发芽环境条件而异.高活力种子胚乳的蛋白酶活性在较低的温度下发芽比低活力种子的高,且在不同温度条件下的变化较小.胚乳蛋白酶活性在10℃和25℃下的比值与种子活力密切相关.玉米种子胚中蛋白酶的活性比胚乳的高,且高活力种子胚的蛋白酶活性较高.α-淀粉酶的活动开始于吸水约5h时的种子中,发芽5~6d时活性达最高.在10℃发芽时,高活力种子α-淀粉酶活性显著地高于低活力种子,但在25℃发芽时两者差异不显著.在不良环境条件下发芽,玉米种子的蛋白酶活性增高,α-淀粉酶的活性降低.高活力种子的蛋白酶和α-淀粉酶的稳定性和协调性较好.  相似文献   

12.
[目的]以产酸性α-淀粉酶菌解淀粉芽孢杆菌B-5为出发菌株,通过对B-5原生质体进行紫外线诱变以达到提高产酸性α-淀粉酶活力的目的。[方法]在溶菌酶浓度为20 mg/ml,37℃酶解90 min条件下,原生质体制备率达到94%。然后经紫外线诱变处理,从中筛选水解圈与菌落比值较大者进行发酵,测定酸性α-淀粉酶活力。[结果]从大量突变菌株中筛选得到1株α-淀粉酶活力为267 U/ml的突变菌株UV-329,其产酶活力较出发菌株B-5提高了254.2%。[结论]利用紫外线对解淀粉芽孢杆菌B-5原生质体进行诱变是一种有效的微生物育种方法。  相似文献   

13.
[目的]通过体外酶解实验,研究粉碎、蒸汽压片和膨化加工方式对玉米淀粉消化性的影响.[方法]用α-淀粉酶分别对粉碎、蒸汽压片及膨化加工处理后的玉米进行8h的酶解,测定酶解过程中各时间点,还原糖生成量、每小时净还原糖产生量及玉米中直链淀粉和支链淀粉的消化量与消化率等指标.[结果]8h内产生还原糖总量,膨化加工方式高于蒸汽压片加工19.8;,高于粉碎加工65.6;;直链淀粉和支链淀粉累积消化量分别高于蒸汽压片加工53.2;和92.2;;高于粉碎加工125.2;和253.7;.[结论]蒸汽压片加工与膨化加工均可以提高玉米淀粉利用率,且膨化加工提高最为显著(P<0.05).  相似文献   

14.
为探讨不同活力玉米种子田间发芽成苗率存在明显差异的生理原因,测定了不同环境条件下玉米种子发芽期间蛋白酶和α-淀粉酶的活性.结果表明,种子活力对玉米籽粒蛋白酶和α-淀粉酶活性的影响因发芽环境条件而异.高活力种子胚乳的蛋白酶活性在较低的温度下发芽比低活力种子的高,且在不同温度条件下的变化较小.胚乳蛋白酶活性在10℃和25℃下的比值与种子活力密切相关.玉米种子胚中蛋白酶的活性比胚乳的高,且高活力种子胚的蛋白酶活性较高.α-淀粉酶的活动开始于吸水约5 h时的种子中,发芽5~6 d时活性达最高.在10℃发芽时,高活力种子α-淀粉酶活性显著地高于低活力种子,但在25℃发芽时两者差异不显著.在不良环境条件下发芽,玉米种子的蛋白酶活性增高,α-淀粉酶的活性降低.高活力种子的蛋白酶和α-淀粉酶的稳定性和协调性较好.  相似文献   

15.
α-淀粉酶的应用及研究进展   总被引:5,自引:3,他引:5  
介绍了α-淀粉酶的工业应用,包括面包焙烤工业、淀粉液化与糖化、纤维脱浆、造纸工业、除垢剂制造、制药与临床化学分析等,并概括了了α-淀粉酶国内外应用与研究进展,以期为α-淀粉酶的进一步研究提供参考。  相似文献   

16.
[目的]以绿豆为原料,研究α-淀粉酶对绿豆粉酶解工艺.[方法]以离心沉淀率作为指标,通过对料液比、酶解时间、加酶量进行单因素试验和正交试验设计,测定饮料沉淀率以确定酶解绿豆饮料的最佳工艺参数.[结果]结果表明:料液比1∶11,酶解时间110 min,温度65℃,中温α-淀粉酶添加量200 U,绿豆谷物饮料酶解效果最佳,在该条件下离心沉淀率为29.68%.[结论]酶解后饮料的沉淀率降低,产品口感爽滑,稳定性较好.  相似文献   

17.
[目的]优化发芽蚕豆β-淀粉酶提取条件。[方法]采用3,5-二硝基水杨酸法。[结果]选用1.0g/L Na2SO3和1.5g/LNaHSO3为还原剂时,发芽蚕豆β-淀粉酶提取效果较好;选用pH值5.5柠檬酸缓冲液和pH值6.5磷酸盐缓冲液时,发芽蚕豆β-淀粉酶提取效果较好。[结论]以1.0g/L Na2SO4为还原剂,以pH值6.5磷酸钾盐缓冲液为提取缓冲液,提取发芽蚕豆β-淀粉酶效果较好。  相似文献   

18.
对水稻进行浸泡发芽培养,使水稻分子内部构象发生改变,达到变性目的,测定变性淀粉α-淀粉酶活力的变化,选择最佳浸泡发芽条件并测定变性后淀粉的粘度。结果表明,选择在25℃,浸泡4 h断水10 h,加碱量为0.03%Ca(OH)2的条件下培养60 h,然后在25℃下发芽6 d,α-淀粉酶活性最高,粘度较好。  相似文献   

19.
烤烟烘烤过程中淀粉酶及淀粉含量的变化   总被引:4,自引:1,他引:4  
 通过对烤烟品种红花大金元和K326的3个施氮量的烟叶烘烤过程中α-淀粉酶、β-淀粉酶活性的变化和烟叶淀粉含量的研究得出如下结论。2个品种3个施氮量处理烟叶α-淀粉酶变化曲线都呈现双峰曲线,两个高峰出现在烘烤过程的36 h和60 h. β-淀粉酶变化的曲线也呈现双峰曲线,两个高峰值出现在烘烤后36 h和72 h. 2个品种3种施氮量处理烟叶淀粉含量都是从烘烤开始至48 h均迅速下降,烘烤48 h至烘烤结束烟叶淀粉含量下降趋势趋于平稳。  相似文献   

20.
从宁紫1号甘薯中提取和纯化β-淀粉酶,并对该酶的特性进行了研究.结果表明,采用乙醇分级和Sephadex G-75相结合的方法,可使酶的比活力从287 U/mg提高到2 054 U/mg.酶经纯化后具有较好的热稳定性,最适温度为60 ℃,最适pH为6.0,在pH 4.0~8.0内有较好的pH稳定性.采用海藻酸盐包埋法制备β-淀粉酶制剂,包埋率达94%,1 g酶制剂的酶活力达68 000 U,1 kg鲜甘薯可生产178 g β-淀粉酶制剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号