首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
汽车线控转向系统路感模拟方法   总被引:4,自引:0,他引:4       下载免费PDF全文
线控转向系统取消了传统转向系统方向盘到转向车轮的机械连接,因而转向路感无法直接反馈给驾驶员,为此通过对汽车转向系统路感的理论分析,建立了线控转向系统动力学模型。采用卡尔曼滤波技术对汽车转向系统齿条受力进行估计,并引入电动助力转向系统的助力特性,设计复制电动助力转向系统路感的线控转向系统路感模拟方法。试验结果表明,路感模拟方法可以使驾驶员获得有效的路感信息,提高了汽车的操纵性和舒适性。  相似文献   

2.
线控转向系统对传统转向系做了根本性的变革:转向盘与转向轮之间取消了机械连接,而采用路感电机反馈路感,采用转向电机实现汽车转向.分析了线控转向系统的总体结构和功能、人机界面一转向盘和操纵杆、转向机构的形式等.可以为线控转向系统的设计提供借鉴.  相似文献   

3.
设计拖拉机线控液压转向系统,并介绍该系统的结构与工作原理。在分析拖拉机转向路感特性的基础上,提出路感系统控制策略,设计出内环电流环、外环转矩环的双闭环PID路感控制系统,既保证期望转矩输出的准确性,又保证其输出的柔顺性。选用无刷直流电机作为路感模拟电机,C8051F040单片机作为控制芯片,完成控制器的软硬件设计。在台架上进行路感控制系统的试验验证,结果表明,当实际输出转矩由0阶跃到5Nm时,响应时间较短,平稳性较好;当目标转矩由0逐渐增加到3.5Nm时,实际输出转矩跟随平滑,滞后时间较短,所设计的路感控制系统很好的实现了路感反馈功能,为在拖拉机上的应用具有实际意义。  相似文献   

4.
汽车线控转向系统取消了传统转向系统方向盘到转向车轮的机械连接,驾驶员无法获得转向路感。针对线控转向系统路感模拟问题,进行了线控转向系统路感模拟算法仿真研究,建立了线控转向系统动力学模型。采用动力学计算法,设计了直接测量转向电机电流来获取转向过程中转向电机所产生的电机力矩的路感模拟算法,应用Matlab/Simulink与CarSim搭建了线控转向系统和线控转向汽车模型,选取方向盘角正弦输入仿真试验和中心区转向仿真试验对控制算法进行仿真验证。仿真试验结果表明:设计的路感模拟算法可为驾驶员提供良好的路感,能够满足高速稳定性以及低速轻便性的要求。  相似文献   

5.
设计了铰接式装载机线控转向系统,在分析装载机路感特性的基础上,提出系统控制策略,并设计了一种基于BP神经网络整定的自适应PID控制器,实现了PID参数的在线调整。仿真和实验结果表明,该控制器可使线控转向系统实现理想的路感特性。  相似文献   

6.
正线控转向技术在重型农用拖拉机领域现已得到广泛应用。本文以铰接轮式拖拉机为研究对象,在保留全液压转向器控制系统的同时,对线控液压转向系统的控制方法进行设计,实现全液压转向与线控转向并存。该设计运用传感器和电液技术,通过电控单元的控制,完成拖拉机的转向动作,使得转向系统更加灵敏、精确,操作更加简单省力,从而提高拖拉机的转向性能,改善驾驶员的人机化操纵,从而提高了拖拉机的作业效率。一、线控转向系统总体方案  相似文献   

7.
本文内容包括,目前农用车辆全液压转向特点,系统组成和分类、三种类型全液压转向结构和作用原理,国外一些公司产品系列。最后分析和讨论了全液压转向使用性能。  相似文献   

8.
本文主要介绍玉米联合收获机全液压转向系统设计过程和设计方法,从原地转向时的力矩计算、转向油缸的参数计算、全液压转向机排量选择、系统流量选择到液压系统的选择,逐步详细的介绍了整个设计过程。  相似文献   

9.
在介绍全液压转向系统工作原理和特点的基础之上,通过建立全液压转向系统效率的数学模型,利用MATLAB进行分析作图,得到了其结构参数对液压转向系统性能的影响规律。  相似文献   

10.
为了使遥操作拖拉机驾驶员对路面信息有更直观的感受,在课题组前期设计的一套拖拉机遥操作系统的基础上设计了路感模拟系统.首先提出路感模拟系统的总体设计方案.然后分析拖拉机路感产生机理,并对遥操作拖拉机的转向执行机构以及控制器进行改造,设计出路感测试系统.最后根据所设计的路感测试系统,在草地、水泥地等路面上对遥操作拖拉机进行...  相似文献   

11.
汽车动力转向系统的发展   总被引:1,自引:1,他引:0  
综述了汽车动力转向技术的发展,分别叙述了液压助力转向系统、电控液压转向系统及电动助力转向系统,主要叙述了液压助力转向系统的结构、工作原理和主要控制策略,探讨了汽车动力转向系统的发展趋势.  相似文献   

12.
全液压转向系统的关键部件是由转向阀与计量马达组成的液压转向器,相关部件都是圆周对称部件,外表都是精密加工表面,制造时无法在零件表面刻上安装记号,极易装配错误而造成方向盘发生严重的打颤现象而不能正常工作,甚至会造成人身安全事故。本文通过CAD软件作图,根据其工作原理论述各部件之间的配流装配关系,并通过试车验证,给全液压转向器的正确装配起到明确的指导作用。  相似文献   

13.
高速插秧机自动转向系统研制   总被引:3,自引:0,他引:3  
高速插秧机的液压助力转向装置为整体式安装,不能通过并联油路的方式实现其自动转向。为此,研制了以无刷电机作为动力源的电动自动转向系统,主要包括转角传感器、转向控制器、无刷电机及其驱动器和辅助传动机构。转角传感器用以测量高速插秧机的前轮转向角,转向控制器读取前轮的转向角度,基于数字PID控制方法计算无刷电机的旋转速度和旋转方向并将控制信号发送至电机驱动器。田间测试结果表明:自动转向系统在[-10°,10°]范围内的转向控制误差小于1°、均方根误差小于1°,具备良好的控制稳定性和可靠性,能够满足高速插秧机田间自动导航的基本要求。  相似文献   

14.
动态负荷传感液压转向系统是轮式拖拉机全液压转向系统的发展趋势,在国外大功率轮式拖拉机上得到了较为广泛的应用。本文简要介绍了动态负荷传感转向系统的原理及优点。  相似文献   

15.
动力转向技术及其发展   总被引:1,自引:1,他引:0  
施国标  林逸  张昕 《农业机械学报》2006,37(10):173-176
综述了轿车动力转向技术的发展,包括液压动力转向、电控液压动力转向、电动助力转向和下一代线控转向系统。分析了各转向系统的发展动因、结构、工作原理、助力特性及特点。探讨了轿车动力转向系统的发展趋势,指出电动助力转向将来动力转向技术的必然发展趋势,线控转向是未来转向系统的发展趋势。  相似文献   

16.
电动助力转向系统转向性能的客观评价   总被引:15,自引:1,他引:15  
针对电动助力转向的结构特点,分析了电动助力转向对汽车转向性能的影响,提出从转向轻便性、转向回正性、转向盘中间位置区域性能、转向盘振动、随动灵敏度和助力特性等方面进行电动助力转向系统转向性能的客观评价,并探讨了相应的评价指标,对电动助力转向助力控制规律、基本设计参数以及相关试验标准的确定有指导意义。  相似文献   

17.
履带拖拉机液压机械双功率流差速转向机构设计   总被引:3,自引:1,他引:2  
基于双功率流传动原理,利用液压元件的无级调速特性,对适合履带车辆的液压机械双功率流差速转向机构的转向原理进行了分析,建立了转向机构的运动方程和转矩方程,提出了转向机构行星排特性参数的确定原则。根据液压转向调速系统主要参数的计算公式,并结合东方红1302R型橡胶履带拖拉机进行了参数设计和转向运动性能分析,所选参数满足整机性能要求。  相似文献   

18.
履带拖拉机控制液压变量柱塞泵的流量和方向驱动液压马达,液压马达动力和发动机传入变速箱的动力汇合,实现行驶和差速转向.现有技术存在两方面问题:一是倒车时方向盘转向和车辆驾驶习惯相反;二是在停车和行驶时会停不稳、行驶跑偏.为此,通过对液压油路进行设计和増设控制阀等方法,实现了倒车时正常转向功能;设计了双定位精准调节机构,使...  相似文献   

19.
电控/电动液压助力转向控制技术研究现状与展望   总被引:6,自引:0,他引:6  
解后循  高翔 《农业机械学报》2007,38(11):178-181
综述电控液压助力转向控制技术的控制策略、方法及其特点。常规电控液压助力转向技术提高了车辆高速转向路感及动态响应,但存在助力特性固定、能量消耗大等缺点。电动液压助力转向技术将成熟的电动机驱动技术与液压伺服技术相结合,在提高高速路感及动态响应的同时,具有节能、环保的优点。建议采用综合控制,进一步提高电动液压助力转向系统的节能、动态响应及自适应能力。  相似文献   

20.
高地隙自走式喷雾机多模式液压转向系统设计与试验   总被引:1,自引:0,他引:1  
为提高高地隙喷雾机的机动性能和作业效率、减少压苗损伤,设计了基于PID控制算法的多模式液压转向系统。采用AMESim软件建立了机械-液压系统耦合模型,采用序列二次组合优化算法确定PID参数的最佳组合,并对不同负载力和负载质量下的系统控制精度进行仿真。仿真结果表明:当比例系数为19.087、积分时间常数为2.008、微分时间常数为0.032时,系统误差最小;前后液压缸负载力差值或负载质量变大,位移误差随之增大,最大误差为-2.18 mm,PID控制算法和压力补偿系统确保了变载荷下系统的控制精度。研制了多模式液压转向系统,进行了坡地和田间转向试验,田间试验时,前后轮转向液压缸之间平均位移误差为4.07 mm,最大误差为-17.59 mm;在坡度15°的路面上,前、后轮转向液压缸之间的平均位移误差为4.89 mm,最大误差为21.34 mm;在前轮转向和四轮转向模式下,不同外前轮转向角田间转向半径的实测值略均大于理论值,误差率均小于4.0%。试验结果验证了所设计的转向系统具有较高的控制精度和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号