首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human-induced degradation of natural resources in general and of soil in particular, is a major problem in many regions, including the Sudano-Sahelian zone. The combined effects of tillage and manure application on Lixisol properties and on crop performance were investigated at Saria, Burkina Faso, to find efficient soil management practices to improve soil fertility. A randomized block design with four treatments (hand hoeing only, hand hoeing+manure, ploughing only, oxen ploughing+manure) in three replications was started in 1990. Ten years later, total soil organic (SOC), particulate organic matter and C mineralization were measured. Initial SOC concentration was 4 mg/g and dropped to 2.1 mg/g soil in ploughed plots without manure and to 2.5 mg/g soil in hoed plots without manure. Manure addition mitigated the decrease of SOC in ploughed plots and even built up SOC in hoed plots, where it increased to 5.8 mg/g soil. Manure had a large effect on the fractions in which SOC was stored. In ploughed plots, a large amount of SOC was stored in physical particles >0.25 mm, while in hand hoed plots the maximum SOC was stored in finer fractions. In the topsoil, hoeing and manure resulted in a higher SOC than ploughing with no manure. However, in the 15–25 cm layer, particularly in September, particulate organic matter was greater in ploughed plots with manure than in hoed plots with manure. Crop yields were highest on ploughed+manure plots and lowest on ploughed plots with no manure. We conclude that applying manure annually mitigates the negative effect of ploughing and hand hoeing on SOC and related properties and therefore can contribute to the sustainability of the agricultural system in the Sudano-Sahelian zone.  相似文献   

2.
Abstract. Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam Lixisol to evaluate long-term effects of tillage (hand hoeing or oxen ploughing) with or without 10 t ha−1 yr−1 of manure and fallowing on SOM and N concentrations and their distribution in particle size fractions. The field was sown annually to sorghum ( Sorghum bicolor [L.] Moench). Ten years later, total organic C and total N, SOM fractions and their N concentrations, and sorghum yield were determined. Continuous sorghum cultivation without organic inputs caused significant losses of C and N in the hoed and ploughed plots. However, addition of manure to hoed plots was effective in maintaining similar levels of C and N to fallow plots. Without manure, SOM was mainly stored in the size-fraction <0.053 mm (fine organic matter, FOM). SOM was mainly stored in the size-fraction between 0.053 and 2 mm (particulate organic matter, POM). In plots with manure and in fallow plots, the addition of manure more than doubled POM concentrations, with levels in tilled plots exceeding those of the fallow plots, and the highest levels in manually hoed plots. Nitrogen associated with POM (POM-N) followed a similar trend to POM. Hoeing and ploughing led to a decline in sorghum grain yield. Manure application increased yields by 56% in the hoed plots and 70% in the ploughed plots. Grain yield was not correlated with total SOM but was positively correlated with total POM. This study indicated that POM was greatly affected by long-term soil management options.  相似文献   

3.
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction.  相似文献   

4.
Dryland wheat (Triticum aestivum L.) and grain sorghum (Sorghum bicolor (L.) Moench) are often grown using a wheat–sorghum-fallow (WSF) crop rotation on the semiarid North American Great Plains. Precipitation stored during fallow as soil water is crucial to the success of the WSF rotation. Stubble mulch-tillage (SM) and no-tillage (NT) residue management practices reduce evaporation, but the sparse residue cover produced by dryland crops, particularly sorghum, is insufficient to reduce soil crusting and runoff. Subsoil tillage practices, e.g., paratill (PT) or sweep (ST), fracture infiltration limiting soil layers and, when used with residue management practices, may increase soil-water storage and crop growth. Our objectives were to compare the effects of PT to 0.35 m or ST to 0.10 m treatments on soil cone penetration resistance, soil-water storage, and dryland crop yield with NT and SM residue management. Six contour-farmed level-terraced watersheds with a Pullman clay loam (US soil taxonomy: fine, mixed, superactive, thermic Torrertic Paleustoll; FAO: Kastanozems) at the USDA—Agricultural Research Service, Conservation and Production Research Laboratory, Bushland, TX, USA (35°11′N, 102°5′W) were cropped as pairs using a WSF rotation so that each phase of the sequence appeared each year. In 1988, residue management plots received PT or ST every 3 years during fallow after sorghum resulting in five treatments: (i) NT–PT, (ii) NT–NOPT, (iii) NT–ST, (iv) SM–PT, and (v) SM–NOPT. Cone penetration resistance was the greatest in NT plots and reduced with PT after 12, 23, and 31 months. Mean 1990–1995 soil-water storage during fallow after wheat was greater with NT than with SM, but unaffected by PT or ST. Dryland wheat and sorghum grain yields, total water use, and water use efficiency (WUE) were not consistently increased with NT, however, and unaffected by PT or ST tillage. We conclude, for a dryland WSF rotation, that: (1) NT increased mean soil-water storage during fallow after wheat compared to SM, and (2) ST and PT “subsoil” tillage of a Pullman did not increase water storage or yield. Therefore, NT residue management was more beneficial for dryland crop production than subsoil tillage.  相似文献   

5.
The objective of this study was to investigate the effect of tillage and cropping system on near-saturated hydraulic conductivity, residue cover and surface roughness to improve soil management for moisture conservation under semiarid Mediterranean conditions. Three tillage systems were compared (subsoil tillage, minimum tillage and no-tillage) under three field situations (continuous crop, fallow and crop after fallow) on two soils (Fluventic Xerochrept and Lithic Xeric Torriorthent). Soil under no-tillage had lower hydraulic conductivity (5.0 cm day−1) than under subsoil tillage (15.5 cm day−1) or minimum tillage (14.3 cm day−1) during 1 of 2 years in continuous crop due to a reduction of soil porosity. Residue cover at sowing was greater under no-tillage (60%) than under subsoil or minimum tillage (<10%) in continuous crop. Under fallow, residue cover was low (10%) at sowing of the following crop for all tillage systems in both soils. Surface roughness increased with tillage, with a high value of 16% and decreasing following rainfall. Under no-tillage, surface roughness was relatively low (3–4%). Greater surface residue cover under no-tillage helped conserve water, despite indications of lower hydraulic conductivity. To overcome the condition of low infiltration and high evaporation when no-till fallow is expected in a cropping sequence, either greater residue production should be planed prior to fallow (e.g. no residue harvest) or surface tillage may be needed during fallow.  相似文献   

6.
The spatial variability of mechanical resistance to penetration (PR) and gravimetric moisture (GM) was studied at a depth of 0–0.40 m, in a ferralsol cropped with corn, and under conventional tillage in Ilha Solteira, Brazil (latitude 20°17′S, and longitude 52°25′W). The purpose of this study was to analyse and to try explaining the spatial variability of the mentioned soil physical properties using geostatistics. Soil data was collected at points arranged on the nodes of a mesh with 97 points. Geostatistics was used to analyse the spatial variability of PR and GM at four depths: 0–0.1, 0.1–0.2, 0.2–0.3 and 0.3–0.4 m. PR showed a higher variability of data, with coefficients of variation of 52.39, 30.54, 16.91, and 15.18%, from the surface layers to the deepest layers. The values of the coefficients of variation for GM were lower: 9.99, 5.13, 5.59, and 5.69%. Correlation between GM and PR for the same soil layers was low. Penetration resistance showed spatial structure only in the 0.30–0.40 m layer, while gravimetric moisture showed spatial structure at all depths except for 0–0.10 m. All the models of fitted semivariograms were spherical and exponential, with ranges of 10–80 m. Data for the variable ‘GM’ in the 0.20–0.30 and 0.30–0.40 m layers revealed a trend in data attributed to the occurrence of subsurface water flow.  相似文献   

7.
Soil erosion is a major threat to global economic and environmental sustainability. This study evaluated long-term effects of conservation tillage with poultry litter application on soil erosion estimates in cotton (Gossypium hirsutum L.) plots using RUSLE 2.0 computer model. Treatments consisting of no-till, mulch-till, and conventional tillage systems, winter rye (Secale cereale L.) cover cropping and poultry litter, and ammonium nitrate sources of nitrogen were established at the Alabama Agricultural Experiment Station, Belle Mina, AL (34°41′N, 86°52′W), beginning fall 1996. Soil erosion estimates in cotton plots under conventional tillage system with winter rye cover cropping declined by 36% from 8.0 Mg ha−1 year−1 in 1997 to 5.1 Mg ha−1 year−1 in 2004. This result was largely attributed to cumulative effect of surface residue cover which increased by 17%, from 20% in 1997 to 37% in 2004. In conventional tillage without winter rye cover cropping, soil erosion estimates were 11.0 Mg ha−1 year−1 in 1997 and increased to 12.0 Mg ha−1 year−1 in 2004. In no-till system, soil erosion estimates generally remained stable over the study period, averaging 0.5 and 1.3 Mg ha−1 year−1with and without winter rye cover cropping, respectively. This study shows that cover cropping is critical to reduce soil erosion and to increase the sustainability of cotton production in the southeast U.S. Application of N in the form of ammonium nitrate or poultry litter significantly increased cotton canopy cover and surface root biomass, which are desirable attributes for soil erosion reduction in cotton plots.  相似文献   

8.
A multi-year experiment was conducted to compare the effects of conservation tillage (no-till and ridge-till) with conventional plow tillage on organic C, N, and resin-extractable P in an alkaline semi-arid subtropical soil (Hidalgo sandy clay loam, a fine-loamy, mixed, hyperthermic Typic Calciustoll) at Weslaco, TX (26°9′N 97°57′W). Tillage comparisons were established on irrigated plots in 1992 as a randomized block design with four replications. Soil samples were collected for analyses 1 month before cotton planting of the eighth year of annual cotton (planted in March) followed by corn (planted in August).

No-till resulted in significantly (p<0.01) greater soil organic C in the top 4 cm of soil, where the organic C concentration was 58% greater than in the top 4 cm of the plow-till treatment. In the 4–8 cm depth, organic C was 15% greater than the plow-till control. The differences were relatively modest, but consistent with organic C gains observed in hot climates where conservation tillage has been adopted. Higher concentrations of total soil N occurred in the same treatments, however a significant (p<0.01) reduction in N was detected below 12 cm in the ridge-till treatment. The relatively low amount of readily oxidizable C (ROC) in all tillage treatments suggests that much of the soil organic C gained is humic in nature which would be expected to improve C sequestration in this soil.

Against the background of improved soil organic C and N, bicarbonate extractable P was greater in the top 8 cm of soil. Some of the improvement, however, appeared to come from a redistribution or “mining” of P at lower soil depths. The results indicate that stratification and redistribution of nutrients were consistent with known effects of tillage modification and that slow improvements in soil fertility are being realized.  相似文献   


9.
Dynamics of soil hydraulic properties during fallow as affected by tillage   总被引:2,自引:0,他引:2  
There is limited information on the effects of tillage practices on soil hydraulic properties, especially changes with time. The objective of this study was to evaluate on a long-term field experiment the influence of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on the dynamics of soil hydraulic properties over 3 consecutive 16–18 month fallow periods. Surface measurements of soil dry bulk density (ρb), soil hydraulic conductivity (K(ψ)) at −14, −4, −1 and 0 cm pressure heads using a tension disc infiltrometer, and derived hydraulic parameters (pore size, number of pores per unit of area and water-transmission porosity) calculated using the Poiseuille's Law were taken on four different dates over the fallow period, namely, before and immediately after primary tillage, after post-tillage rains and at the end of fallow. Under consolidated structured soil conditions, NT plots presented the most compacted topsoil layer when compared with CT and RT. Soil hydraulic conductivity under NT was, for the entire range of pressure head applied, significantly lower (P < 0.05) than that measured for CT and RT. However, NT showed the largest mean macropore size (0.99, 0.95 and 2.08 mm for CT, RT and NT, respectively; P < 0.05) but the significantly lowest number of water-conducting pores per unit area (74.1, 118.5 and 1.4 macropores per m2 for CT, RT and NT, respectively; P < 0.05). Overall, water flow was mainly regulated by macropores even though they represented a small fraction of total soil porosity. No significant differences in hydraulic properties were found between CT and RT. In the short term, tillage operations significantly increased K (P < 0.05) for the entire range of pressure head applied, which was likely a result of an increase in water-conducting mesopores despite a decrease in estimated mesopore diameter. Soil reconsolidation following post-tillage rains reduced K at a rate that increased with the intensity of the rainfall events.  相似文献   

10.
Soil carbon (C) losses and soil translocation from tillage operations have been identified as causes of soil degradation and soil erosion. The objective of this work was to quantify the variability in tillage-induced carbon dioxide (CO2) loss by moldboard (MP) and chisel (CP) plowing across an eroded landscape and relate the C loss to soil properties. The study site was a 4 ha wheat (Triticum aestivum L. cv. Marshall) field with rolling topography and five soil types in the Svea-Barnes complex in west central Minnesota (N. Latitude = 45°41′W, Longitude = 95°43′). Soil properties were measured at several depths at a 10 m spacing along north–south (N–S) and west–east (W–E) transects through severely eroded, moderately eroded and non-eroded sites. Conventional MP (25 cm deep) and CP (15 cm deep) equipment were used along the pre-marked transects. Gas exchange measurements were obtained with a large, portable chamber within 2 m of each sample site following tillage. The measured CO2 fluxes were largest with the MP > CP > not tilled (before tillage). The variation in 24 h cumulative CO2 flux from MP was nearly 3-fold on the N–S transect and 4-fold on the W–E transect. The surface soil organic C on the transects was lowest on the eroded knolls at 5.1 g C kg−1 and increased to 19.6 g C kg−1 in the depositional areas. The lowest CO2 fluxes were measured from severely eroded sites which indicated that the variation in CO2 loss was partially reflected by the degradation of soil properties caused by historic tillage-induced soil translocation with some wind and water erosion.

The spatial variation across the rolling landscape complicates the determination of non-point sources of soil C loss and suggests the need for improved conservation tillage methods to maintain soil and air quality in agricultural production systems.  相似文献   


11.
In semi-arid areas under rainfed agriculture water is the most limiting factor of crop production. To investigate the best way to perform fallow and its effect on soil water content (SWC) and root growth in a barley (Hordeum vulgare L.) crop after fallow, an experiment was conducted on two soils in La Segarra, a semi-arid area in the Ebro Valley (Spain). Fallow was a traditional system used in these areas to capture out-of-season rainfall to supplement that of the growing period, usually lasting 16 months, from July to October of the next year. Soil A was a loamy fine Fluventic Xerochrept (Haplic Calcisol, FAO) of 120 cm depth and Soil B was a loamy Lithic Xeric Torriorthent (Calcaric Regosol, FAO) of only 30 cm depth. The experiment was continued for four fallow-crop cycles in Soil A and for two in Soil B. In Soil A, three tillage systems were compared: subsoil tillage (ST), minimum tillage (MT) and no-tillage (NT). In Soil B, only MT and NT were compared. In the fields cropped to barley, SWC and root length density (LV) were measured at important developmental stages during the season, lasting from October to June. In the fallow fields SWC was also monitored. Here, evaporation (EV), water storage (WS) and water storage efficiency (WSE) were calculated using a simplified balance approach. The fallow period was split in two 8-month sub-periods: July–February (infiltration) and March–October evaporation (EV). In Soil A, values of WSE were in the range 10–18% in 1992–1993, 1993–1994 and 1994–1995 fallow, but fell to 3% in 1995–1996. Among tillage systems, NT showed significantly greater WSE in the July–February sub-period of 1992–1993 and 1993–1994 fallow, but significantly lower WSE in the March–October sub-period, due to greater EV under NT. Consequently, no differences in total WSE were found between tillage systems. In Soil B, WSE was low, about 3–7%, and there were no difference between tillage systems. During the crop period, the differences in SWC and LV between tillage systems were small. Regarding yields, the best tillage system depended on the year. NT is potentially the best system for executing fallow, but residues of the preceding crop must be left spread over the soil.  相似文献   

12.
Most of the tillage erosion studies have focused on the effect of tractor-plough tillage on soil translocation and soil loss. Only recently, have a few studies contributed to the understanding of tillage erosion by manual tillage. Furthermore, little is known about the impact of tillage erosion in hilly areas of the humid sub-tropics. This study on tillage erosion by hoeing was conducted on a purple soil (Regosols) of the steep land, in Jianyang County, Sichuan Province, southwestern China (30°24′N and 104°35′E) using the physical tracer method.

The effects of hoeing tillage on soil translocation on hillslopes are quite evident. The tillage transport coefficients were 26–38 kg m−1 per tillage pass and 121–175 kg m−1 per tillage pass respectively for k3- and k4-values. Given that there was a typical downslope parcel length of 15 m and two times of tillage per year in this area, the tillage erosion rates on the 4–43% hillslopes reached 48–151 Mg ha−1 per year. The downslope soil translocation is closely related to slope gradient. Lateral soil translocation by such tillage is also obvious though it is lower than downslope soil translocation. Strong downslope translocation accounts for thin soil layers and the exposure of parent materials/rocks at the ridge tops and on convexities in the hilly areas. Deterioration in soil quality and therefore reduction in plant productivity due to tillage-induced erosion would be evident at the ridge tops and convex shoulders.  相似文献   


13.
Integrated evaluation of soil physical properties using the least limiting water range (LLWR) approach may allow a better knowledge of soil water availability. We determined the LLWR for four tillage practices consisted of conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and fallow no-tillage (NTf). In addition, LLWR was determined for abandoned soils (i.e. control), compacted soils, ploughed compacted soils and abandoned soils with super absorbent polymers (SAPs) application. Soil water retention, penetration resistance (PR), air-filled porosity and bulk density were determined for the 0–5 and 0–25-cm depths. Mean LLWR (0.07–0.08 cm3 cm?3) was lower in compacted soils than the soils under CT, NT, NTf, RT, tilled, abandoned and SAP practices but it was not different among tillage practices. The values of LLWR were 0.12 cm3 cm?3 for NT and CT. LLWR for tilled plots (0.12 cm3 cm?3) became greater than compacted soils by 1.3 times. Analysis of the lower and upper limits of the LLWR further indicated that PR was the only limiting factor for soil water content, but aeration was not a limiting factor. The LLWR was more dependent on soil water content at permanent wilting point and at PR.  相似文献   

14.
不同土壤水吸力与耕作方式对土壤压缩—回弹特性的影响   总被引:2,自引:0,他引:2  
[目的]合理耕作方式是缓解土壤压实、提升土壤生产能力的有效措施,而土壤水分是影响土壤机械物理性能的重要因素,直接影响土壤耕作质量.通过研究不同土壤水吸力和耕作方式下土壤压缩曲线及模型拟合效果,分析土壤回弹—再压缩曲线变化及机械力学参数(预固结压力、压缩指数和回弹指数)差异,以期为农田土壤耕作和培肥提供科学依据.[方法]...  相似文献   

15.
Poor lateral water infiltration into permanently raised beds (PRB) can reduce crop yield and water use efficiency (WUE) in dryland agriculture. Especially for densely planted crops the reduced soil moisture affects seedling emergence and causes slow crop growth. Soil loosening with three different types of cutters was tested to overcome this problem of wide PRB in this study. A field experiment with five treatments (traditional tillage, bed without soil loosening, bed with soil loosening by two-edge cutter, bed with soil loosening by flat cutter and bed with soil loosening by V-shaped cutter) was conducted in the Hexi Corridor, northwest China, on spring wheat in 2005 and 2006. The effects of soil loosening and the performances of the three cutters were assessed based on 2 years of soil moisture, bulk density, temperature, spring wheat growth, yield, WUE, power and fuel consumption data. Soil loosening significantly increased lateral water infiltration and thus improved soil water content by 3–8% to 100 cm depth and soil temperature by 0.2–0.4 °C to 30 cm depth compared to beds without soil loosening on sandy-loam soil in 100 cm wide bed systems. Furthermore, bulk density at 10–20 cm depth was about 7.4% lower for bed with soil loosening treatments than for bed without soil loosening. The best results were achieved by the V-shaped cutter, which at a slight additional fuel consumption of 0.46–0.84 l ha−1 offered the greatest benefits to spring wheat yield and WUE. Spring wheat yields increased by 5% and WUE improved by 38% compared to traditional tillage due to higher soil moisture and temperature, lower bulk density and faster growth. The improvements in WUE have tremendous implications in the arid areas of northwest China where agriculture relies heavily on irrigation, but water resources are scarce. We conclude therefore that soil loosening by V-shaped cutter is an efficient way to remove poor water infiltration, and significantly improve yield and WUE for wide beds under PRB farming system in arid areas of northwest China.  相似文献   

16.
Production of winter wheat in central Alberta may be risky due to winter-kill by low temperatures. Winter survival can be enhanced with a snow-trapping stubble. The effect of barley stubble height and tillage on snow depth and soil temperature was investigated during the winters of 1983–1984 and 1984–1985 on a Black Chernozemic soil at Lacombe, Alberta. Snow depth was measured only in 1984–1985 and was deepest under zero tillage with the tallest stubble (30 cm). Under zero tillage, stubble height had a significant effect on soil temperature. Soil temperatures under zero tillage with no stubble were the lowest and fluctuated greatly in response to air temperatures. Soil temperatures increased with an increase in stubble height and were highest at a stubble height of 15 or 30 cm. Soil temperatures in plots with stubble 15 cm tall were 3.9-5.3°C higher than in plots with no stubble. Under conventional tillage, stubble did not affect soil temperatures in 1983–1984, but in 1984–1985 soil temperatures in November and December were warmer when stubble was incorporated than when it was removed. Soil temperatures under conventional tillage were generally similar to temperatures under zero tillage with no stubble or with stubble of 7.5 cm. Although the soil temperatures during the course of this study did not go below the critical lethal limits of −20°C, the results indicated that stubble height and zero tillage may provide a solution to some of the problems associated with winter kill of winter wheat in central Alberta.  相似文献   

17.
Tillage systems modify, at least temporarily, some of the physical properties of soil, such as soil porosity. Tillage also has an indirect effect on soil water content throughout the growth cycle, particularly in areas with a Mediterranean climate. This paper presents the results of monitoring the water content in the topsoil (0–0.20 m) of three adjacent plots during February to May cycles starting in 1994–1995 and ending in 1998–1999. Each of the plots had a surface area of 2700 m2, an 8% slope and Calcic Cambisol soil. Starting in 1994, three different tillage systems were applied: conventional tillage, which is typical of the area (CT); minimum tillage (MT); and no-tillage (NT). Two vertical 200 mm TDR probes were permanently installed in each plot and measurements were taken every week. The results show that, under an NT system, the soil had significantly higher water content than the other two soil plots. However, this increased quantity of water did not denote increased crop production; on the contrary, these preliminary data point to a decrease in crop production.  相似文献   

18.
The submontaneous tract of Punjab comprising 10% of the state, is prone to soil erosion by water. Soils of the area are coarse in texture, low in organic matter and poor in fertility. High intensity rains during the monsoon season result in fertile topsoil removal. There is an urgent need to control soil erosion in this region so as to improve soil productivity. A field study was conducted to estimate the effect of tillage and different modes of mulch application on soil erosion losses. Treatments comprised two levels of tillage, viz. minimum (Tm) and conventional (Tc) in the main plots and five modes of straw mulch application, viz. mulch spread over whole plot (Mw), mulch spread on lower one-third of plot (M1/3), mulch applied in strips (Ms), vertical mulching (Mv) and unmulched control (Mo), in subplots in a replicated split plot design. Rate of mulch application was 6 t ha−1 in all modes. Compared with Mo, Mw reduced runoff by 33%. Runoff and soil loss were 5 and 40% higher under Tc than under Tm. Though other modes of straw mulch application (M1/3, Ms and Mv) controlled soil loss better than Mo, their effectiveness was less than Mw. Tm was more effective in conserving soil moisture than Tc. Compared with Mo, Mw had 3–7% higher soil moisture content in the 0–30 cm soil depth under Tm. Minimum soil temperature of the surface layer was 1.4–2.4 °C lower under Mw than under Mo. Straw mulching reduced maximum soil temperature and helped in conserving soil moisture. Minimum tillage coupled with Mw was highly effective in reducing soil erosion losses, decreasing soil temperature and increasing moisture content by providing maximum surface cover.  相似文献   

19.
Much uncertainty exists among growers concerning the need to adjust N-fertilizer application to cereals when reduced tillage is adopted. Studies in long-term trials are required to give an adequate answer to this question, which is of both economic and environmental interest. N-fertilizer requirements of spring cereals and of soil mineral nitrogen contents at different times of the year were measured over the period 1991–1996 in two long-term tillage trials established in 1980 at Kise (60°46′N, 10°49′E) on morainic loam soil. Tillage treatments comprised conventional tillage with autumn ploughing and reduced tillage without ploughing and with harrowing in spring kept to the minimum necessary for seeding. Four levels of N-fertilizer (0, 60, 90 and 120 kg N/ha) were compared in 1991–1995 in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), and their residual effect was measured in 1996. Levels of soil mineral nitrogen before fertilization in spring were on an average 8% lower with reduced tillage than with conventional tillage. Plant development was delayed with reduced tillage, but this was compensated for later in the season. A two-year incubation study under covered plots in the field did not reveal any effect of tillage on net nitrogen mineralisation. There was a tendency to higher straw yield with reduced tillage, but no overall effect on grain yield. Responses to N-fertilizer were almost identical with both the tillage systems, and yields increased up to the highest level of application. Crop nitrogen contents were monitored, but only minor differences were found between tillage systems in total uptakes and apparent N-fertilizer recoveries. On the basis of these results it is concluded that long-term reduced tillage does not affect the N-fertilizer requirements of spring cereals on loam soils under cool climatic conditions.  相似文献   

20.
The use of conservation tillage systems is now widespread for cereals in erosion-prone areas of Norway. However, few growers are willing to adopt such practices for other crops. An experiment was conducted in southern Norway (60°46′N, 10°49′E) from 1987 to 1993 to compare the effects of two different tillage treatments on potato (Solanum tuberosum L.) yield and quality. The conventional labour-intensive treatment, with autumn mouldboard ploughing, levelling and two passes with a spring-tine harrow in spring was compared with planting directly into untilled barley (Hordeum vulgare L.) stubble, with straw removed. The soil type in the experiment was a morainic, stony loam (Typic Cryoboroll, Orthic Melanic Brunisol). Prior to the start of the experiment direct-planted plots had not been ploughed for 9 years. During the trial years (1987–1993) a pattern of two different yield curves emerged as functions of the date of harvesting. The yield curve for direct planting was steeper, crossing that of conventional tillage on approximately 10 September, thus predicting higher tuber yield for direct planting when harvesting occurred after this date, but lower tuber yield than with conventional tillage in the case of early harvesting. The reason for this is thought to be cooler soil and delayed growth and maturation with direct planting. Furthermore, direct planted potatoes gave higher haulm yield, and also had higher contents of N, P and K in both haulm and tubers. No significant differences in tuber quality were found between the two treatments. A strong negative correlation was found between the yield increase caused by direct planting and mean air temperature in August. The trial indicated that direct planting of potatoes in cereal stubble is a viable alternative to conventional plough tillage on loam soil in Norway, provided that the growing season is adequately long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号