首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of partial root-drying (PRD) irrigation implies doubling pipelines instead of using a conventional single pipeline. However, pipelines can be spaced a short distance apart (e.g. 1 m) along the vine row (“D” layout) or joined with cable ties and laid as a single pipeline (“S” layout). Pipelines in “S” configuration are laid under the vine row, and in “D” at both sides of the vine row. These two different layouts can change the wetted soil zone and affect grapevine response to irrigation. The focus of this study was therefore on establishing the role of pipeline layout in vine-grape (cv. ‘Tempranillo’) response under semi-arid conditions in which PRD is managed as a deficit irrigation technique. Six irrigation treatments were applied, which resulted from the combination of Control (C, full irrigation), PRD and seasonal sustained deficit irrigation (SSDI), and “S” and “D” pipeline layouts. SSDI and PRD were irrigated to 50% C throughout the irrigation season, and C irrigation was scheduled according to a crop water balance technique. Midday stem water potential (Ψstem) and leaf conductance (gl) indicated that, on the whole, PRD treatments had a slightly higher water status than SSDI treatments, but a substantially lower status than C treatments. Use of the “D” pipeline layout significantly reduced Ψstem in both PRD and SSDI treatments and in some instances for Control conditions, too. Berry yield, vine intercepted radiation, leaf abscisic acid (ABA) and gl were highly correlated with Ψstem. Differences in water status between PRD-S and SSDI-S, according to a sub-surface irrigation test, seemed to be more related to changes in soil evaporation losses and irrigation efficiency than to any intrinsic PRD effect. PRD-S accounted for water savings equivalent to 10% according to the ratio between applied water and grape production for the SSDI-S treatment, whereas PRD-D berry yield was not significantly different from that associated with the SSDI-S treatment. In conclusion, under the growing conditions of this experiment, PRD-S offered the possibility of slightly improving water conservation when irrigation was applied to the soil surface.  相似文献   

2.
Use of stem diameter variations to detect plant water stress in tomato   总被引:3,自引:0,他引:3  
The sensitivity of stem diameter variations (SDV) measured with linear variable transducer (LVDT) sensors as indicators of plant water status in tomato was evaluated. Two tomato crops were grown sequentially in a sandy loam soil in an unheated plastic greenhouse. These were an autumn–winter tomato crop (autumn crop) and a spring–summer tomato crop (spring crop). One drying cycle of 61 days was imposed to the autumn crop in winter at 92 days after transplanting (DAT). Two drying cycles, each of 29 days, were applied to the spring crop, to young (58 DAT) and mature plants (121 DAT). For each drying cycle, four replicate plots did not receive irrigation, and four were well watered. During each drying cycle, LVDT sensors continuously measured SDV, and daily measurements were made of leaf (Ψ leaf) and stem water potential (Ψ stem). SDV data was interpreted using the SDV-derived indices, maximum daily shrinkage (MDS) and stem growth rate (SGR). The response of SDV-derived indices to water deficit differed with (1) climatic conditions during stress imposition and (2) crop age. In the winter drying cycle of the autumn crop, the responses of the SDV-derived indices to soil drying were relatively small and slower than Ψ leaf and Ψ stem. Under warmer conditions, the SDV-derived indices were much more responsive to soil drying. In rapidly growing young plants, where SDV was characterized by high SGR and small MDS, SGR was the most sensitive SDV-derived index. In more mature plants with little stem growth, MDS was the most sensitive SDV-derived index. In mature plants grown in warm to hot conditions, MDS (1) responded at a similar time or earlier than Ψ leaf and Ψ stem and (2) had larger “signal” values (ratio of values from unwatered to control plants) than Ψ leaf and Ψ stem. However, there was appreciably more “noise” (coefficient of variation, CV) associated with the SDV-derived indices, giving lower “sensitivity” values, determined from “signal” to “noise” ratios, than for Ψ leaf and Ψ stem. Regression analysis between MDS of well-watered plants and climatic variables gave best results for a linear relationship between MDS and daily maximum vapor pressure deficit. There were strong linear relationships between MDS and Ψ leaf for each drying cycle. The slopes of these relationships differed with crop age indicating that there was no constant relationship between MDS and Ψ leaf for a whole season. Overall these results demonstrated that MDS and SGR can be sensitive indicators of the water status of tomato crops under conditions of moderate to high evaporative demand. However, the variability associated with the SDV-derived indices and the changing MDS–Ψ leaf relationship with crop age represent major issues regarding the development of irrigation scheduling protocols for tomato.  相似文献   

3.
Measurements of midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) were taken over a 4-year period in early maturing peach trees (Prunus persica (L.) Batsch cv. Flordastar) grafted on GF-677 rootstock. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that seasonal reference equations can be obtained for MDS and Ψstem using crop reference evapotranspiration (ETo), daily mean vapour pressure deficit (VPDm) and mean daily air temperature (Tm) in the case of MDS, and ETo and VPDm in the case of Ψstem. In this way, VPDm was seen to be the best predictor of MDS and Ψstem, without both were influenced significantly by yield or crop load variations between years. When the postharvest regression between MDS or Ψstem and the meteorological parameters mentioned were broken down into early and late postharvest periods, the correlation coefficients improved and were closely related to the presence or absence of sugar-demanding sinks, such as active root growth. A negative linear relationship between MDS and Ψstem was found, pointing to unchanging radial hydraulic conductivity in the bark tissues and suggesting that MDS depends to a great extent of the water potential.  相似文献   

4.
The performance of different indicators of plant water status as a tool for irrigation management was evaluated in mature field grown ‘Golden Delicious’ apple trees during the late summer of 1998. Control (C) and stress (S) treatments were studied. In the C treatment trees were irrigated daily at 100% ETc whereas in the S treatment water was withheld during 31 days (DOY’s 236–266). Predawn water potential (Ψpd) and midday stem water potential (Ψstem) were measured several times a week during the experimental period. Three daily measurements of stomatal conductance (gs) and stem water potential were made during five consecutive days in mid-September. Trunk diameter changes (TDC) were recorded by LVDT sensors, and from these measurements, maximum daily shrinkage (MDS), daily growth (DG), and cumulative growth (CG) were calculated. Midday Ψstem showed the best ratio between the response to moderate water stress and tree variability (“signal/noise” ratio) among the indicators studied here, followed closely by Ψpd. On the other hand, the poorest water status indicator was gs. Due to the low trunk growth rate of the trees, and its high variability, DG and CG were not adequate indicators. MDS showed a lower sensitivity to water stress and a higher variability (CV = 0.19) than midday Ψstem (CV = 0.08) and Ψpd (CV = 0.10). However, MDS correlated well with ET0 and with midday Ψstem (R 2 = 0.79) thus, making this parameter an interesting and promising tool for irrigation management in apple orchards. More research needs to be done in order to define reference values for MDS and plant water potential indicators, in relation to evaporative conditions and in different phenological periods, and to quantify the relationship between water status indicators values and apple tree yield and fruit quality.  相似文献   

5.
We examined, over the postharvest seasons of 2005–2007, regulated deficit irrigation (RDI) for its potential of saving water and maintaining fruit yield and quality in ‘Summit’ sweet cherry. The postharvest irrigation treatments were: full irrigation (Control), receiving 80% of water in Control (RDI-80%), and receiving 50% of water in Control (RDI-50%). Midday stem water potential (Ψstem) was used for assessing plant water status. In 2006, trees produced a large crop and commercial fruit thinning had to be applied, whereas 2007 was a low crop year. The RDI treatment, first applied in 2005, reduced fruit set in 2006 and also reduced root winter starch concentration. In 2006, fruit set was lower in RDI-50% than in Control. But fruit thinning had still to be done with the final yield being the same among treatments. In 2007, RDI-50% produced more fruit and higher yields than Control. Relationship between postharvest Ψstem and crop load in the following season varied according to the year. They were negatively correlated in 2006 and positively correlated in 2007. Fruit firmness did not vary with irrigation treatments in any of the years. Fruit soluble solid concentration (SSC) and fruit relative dry matter (RDM) for RDI-50% was the highest in 2006 when RDI-50% trees had the lowest fruit set. In 2007, SSC and RDM for RDI-50% were the lowest with the trees having the highest fruit set and crop load at harvest. This study indicates that RDI-50% firstly applied in an “off” year, after crop has been harvested, can maintain fruit yield at similar levels to fully irrigated trees while saving water by 45%. Correction of biennial bearing and partial saving of thinning costs are additional advantages of this treatment.  相似文献   

6.
The level of irrigation restriction to apply in a deficit irrigation (DI) programme for sustainable peach (‘Baby gold 6’) production was investigated. The experiment involved four irrigation treatments over five consecutive seasons (2007–2011). They were full irrigation (control), reducing irrigation by 20 % during the first half of stage III (DI-80 %), withholding irrigation until reaching a light stress level (DI-L) and withholding irrigation until reaching a moderate stress level (DI-M). The withholding of irrigation in both DI-L and DI-M was applied only during stage II and postharvest periods and was based on midday stem water potential thresholds (Ψ stem). For the DI-L treatment ?1.5 MPa was used in both periods, and for DI-M ?1.8 and ?2.0 MPa were used during stage II and postharvest, respectively. Average Ψ stem values during DI periods were approximately ?1.4 and ?1.2 MPa for DI-M and DI-L, respectively. The pre-defined thresholds required to trigger irrigation were rarely reached. No significant differences between treatments were found in terms of yield in any experimental year. However, DI-M and to a lesser extent DI-L had lower final fruit fresh mass at harvest related to lower Ψ stem after three consecutive years of the experiment (during 2010 and 2011). Therefore, in terms of fruit size, DI was not sustainable. Rather than lowering Ψ stem thresholds, we recommend discontinuing DI after 3-year application.  相似文献   

7.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

8.
Persimmon tree (Diospyros kaki L.f.) is a deciduous fruit tree included in the so-called group of minor fruit tree species. Worldwide, it is not widely grown but, nowadays, Kaki culture is of some importance in the south-east of Spain because of the high fruit commercial value. Currently, neither it is known about Kaki trees water needs, nor crop responses to the irrigation regime. The objective of the present research was to assess the feasibility of using maximum diurnal trunk shrinkage (MDS) as a plant water stress indicator for Kaki trees. During two drought cycles, in trees under either full or deficit irrigation, the MDS obtained by means of LVDT sensors was compared with a reference indicator of fruit trees water status, the midday stem water potential (Ψstem). In addition, stomatal conductance and fruit diameter variations were also followed. As water restrictions began, there was an immediate increase in MDS, in correspondence with a decrease in Ψstem. Pooling data from both drought cycles and irrigation regimes, MDS and Ψstem were linearly correlated (r2 = 0.77***). The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was three times higher than for Ψstem; average coefficient of variation of 14% and 38% for Ψstem and MDS, respectively. Overall, results reported indicated that MDS is a sensitive indicator of Kaki water status and it can be further used as an irrigation scheduling indicator for optimum irrigation management of this crop. However, the large MDS tree-to-tree variability should be taken into account when selecting the number of trees to monitor within an orchard.  相似文献   

9.
Pomegranate (Punica granatum L.) is a deciduous fruit tree native of central Asia included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Fruit consumption interest is due to the organoleptic characteristics and to the beneficial effects on health. Pomegranate tree are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this work was to characterize, for the first time in P. granatum, water relations aspects of applied significance for irrigation scheduling. Trees under different irrigation regimes were used and midday stem water potential (Ψstem) and midday leaf gas exchange were periodically measured over the course of an entire season. During spring and autumn, Ψstem did not show significant differences between irrigation treatments while there were considerable differences in leaf photosynthesis and stomatal conductance, suggesting a near-isohydric behaviour of pomegranate trees. This might explain why the signal intensity of Ψstem was lower than those of gas exchange indicators during the experimental period. Thus, leaf photosynthesis rates and stomatal conductance might have a greater potential for irrigation scheduling of pomegranate trees than Ψstem measured at solar noon.  相似文献   

10.
Regulated deficit irrigation (RDI) strategies, often applied in tree crops, require precise monitoring methods of water stress. Crop water stress index (CWSI), based on canopy temperature measurements, has shown to be a good indicator of water deficits in field crops but has seldom been used in trees. CWSI was measured on a continuous basis in a Central California mature pistachio orchard, under full and deficit irrigation. Two treatments—control, returning the full evapotranspiration (ETc) and RDI—irrigated with 40% ETc during stage 2 of fruit grow (shell hardening). During stage 2, the canopy temperature—measured continuously with infrared thermometers (IRT)—of the RDI treatment was consistently higher than the control during the hours of active transpiration; the difference decreasing after irrigation. The non-water-stressed baseline (NWSB), obtained from clear-sky days canopy–air temperature differential and vapour pressure deficit (VPD) in the control treatment, showed a marked diurnal variation in the intercept, mainly explained by the variation in solar radiation. In contrast, the NWSB slope remained practically constant along the day. Diurnal evolution of calculated CWSI was stable and near zero in the control, but showed a clear rising diurnal trend in the RDI treatment, increasing as water stress increased around midday. The seasonal evolution of the CWSI detected large treatment differences throughout the RDI stress period. While the CWSI in the well-irrigated treatment rarely exceeded 0.2 throughout the season, RDI reached values of 0.8–0.9 near the end of the stress period. The CWSI responded to irrigation events along the whole season, and clearly detected mild water stress, suggesting extreme sensitivity to variations in tree water status. It correlated well with midday leaf water potential (LWP), but was more sensitive than LWP at mild stress levels. We conclude that the CWSI, obtained from continuous nadir-view measurements with IRTs, is a good and very sensitive indicator of water stress in pistachio. We recommend the use of canopy temperature measurements taken from 1200 to 1500 h, together with the following equation for the NWSB: (T c − T a) = −1.33·VPD + 2.44. Measurements of canopy temperature with VPD < 2 kPa are likely to generate significant errors in the CWSI calculation and should be avoided.  相似文献   

11.
Measurements of midday stem water potential (ψstem) and maximum daily trunk shrinkage (MDS) were done over a 3-year period in adult Fino lemon trees (Citrus limon (L.) Burm. fil.) grafted on sour orange (C. aurantium L.) rootstocks. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that reference equations can be obtained for MDS and ψstem by pooling data across several seasons using crop reference evapotranspiration (ETo), daily mean vapor pressure deficit (VPDm) and mean daily air temperature (T m) in the case of MDS, and ETo in the case of ψstem. The best predictor of MDS under non-limiting soil water conditions was T m, suggesting that MDS reference values can be obtained by means of easy and cheap measurements. MDS and ψstem values were not influenced significantly by yield or crop load variations between years. A negative linear relationship between MDS and ψstem was found, pointing to an unchanging radial hydraulic conductivity in the bark tissues and suggesting that the MDS is controlled by water potential.  相似文献   

12.
Midday leaf water potential (Ψmd) was monitored for 3 years at a commercial vineyard (cv. Pinot Noir) under four irrigation strategies. Three treatments were established based on irrigating vines with 4–6 mm/day, when daily measured Ψmd was more negative than the pre-defined threshold. After the first experimental year, thresholds were adjusted for each treatment as: (1) Control (C), irrigated when Ψmd was less than −0.6 MPa at the beginning of the season and gradually fell to −0.8 MPa at about mid-June, after which the threshold was maintained at −0.8 MPa until harvest. (2) Control–Deficit (CD), irrigated as C from bud-break to mid-June (around the middle of Stage II of fruit growth), and from then until harvest when Ψmd decreased below −1.2 MPa. (3) Deficit–Deficit (DD), irrigated when Ψmd was less than −1.0 from bud break to mid-May (about the middle of fruit growth Stage I), and after that time the Ψmd threshold became −1.2 MPa until harvest. A fourth treatment was applied following a soil water budget approach (WB). All treatments were replicated five times but irrigation in the Ψmd-based treatments were independently applied to each of the replicate plots, whereas irrigation for WB was applied equally to all replications. The more site-specific information obtained from Ψmd thresholds in C provided substantial advantages for yield homogeneity and repeatability of results with respect to WB, thus demonstrating the method’s greater ability to account for spatial variability. Average applied water for the 3 years in C, CD, and DD was 374, 250, and 178 mm, respectively, while the yields were 11.8, 9.2, and 6.1 kg/vine, respectively. The CD treatment produced better juice quality than C, and was superior in other quality parameters to both C and DD. However, over the study period, an important carryover effect was observed in the yields and the grape size of CD, which tended to diminish from year to year relative to C.  相似文献   

13.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

14.
15.
The sensitivity to water stress of different plant water status indicators was evaluated during two consecutive years in early nectarine trees grown in a semi-arid region. Measurements were made post-harvest and two irrigation treatments were applied: a control treatment (CTL), irrigated at 120 % of crop evapotranspiration demand to achieve non-limiting water conditions, and a deficit irrigation treatment, that applied around 37 % less water than CTL during late postharvest. The plant water status indicators evaluated were midday stem water potential (Ψ stem) and indices derived from trunk diameter fluctuations: maximum daily shrinkage (MDS), trunk daily growth rate, early daily shrinkage measured between 0900 and 1200 hours solar time (EDS), and late daily shrinkage that occurred between 1200 hours solar time and the moment that minimum trunk diameter was reached (typically 1600 hours solar time). The most sensitive [highest ratio of signal intensity (SI) to noise] indices to water stress were Ψ stem and EDS. The SI of EDS was greater than that of Ψ stem, although with greater variability. EDS was a better index than MDS, with higher SI and similar variability. Although MDS was linearly related to Ψ stem down to ?1.5 MPa, it decreased thereafter with increasing water stress. In contrast, EDS was linearly related to Ψ stem, although the slope of the regression decreased as the season progressed, as in the case of MDS. Further studies are needed to determine whether EDS is a sensitive index of water stress in a range of species.  相似文献   

16.
Gas exchange was measured in potatoes (cv. Folva) grown in lysimeters (4.32 m2) in coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI and started after tuber bulking and lasted for six weeks until final harvest. Midday photosynthesis rate (An) and stomatal conductance (gs) of fully irrigated (FI) plants were lowest in coarse sand and mean An of diurnal measurements in FI, PRD and DI tended to be lower in this soil as compared with the loamy sand and sandy loam. The results revealed that diurnal values of An and gs in PRD and DI were consistently lower than FI without reaching significant differences in accordance with findings that xylem [ABA] in PRD was significantly higher than FI, and tended to be higher than in DI. Diurnal measurements showed that An reached peak values during mid-morning and midday, while gs were highest during the morning. Intrinsic water use efficiency (An/gs) correlated linearly well with the leaf to air vapor pressure deficit (VPD) and the slope of the line revealed the rate of An/gs increase per each kPa increase in VPD, i.e. approximately 10 μmol mol−1. Transpiration efficiency (An/T) of PRD was higher than DI, which shows slightly better efficient water use than DI. The slope of the linear relationship between transpiration efficiency and VPD decreased from −2.03 to −1.04 during the time course of the growing season, indicating the negative effect of leaf ageing on photosynthesis and thus on plant water use efficiency. This fact shows the possibility to save water during last growth stages through applying water-saving irrigations without much effect on transpiration efficiency.  相似文献   

17.
Knowledge of crop production in suboptimal environmental conditions not only helps to sustain crop production but also aids in the design of low-input systems. The objective of this study was to evaluate the effects of water stress imposed at low-sensitive growth stages (vegetative, reproductive, and both vegetative and reproductive) and level of nitrogen (N) supply (100 and 200 kg ha−1) on the physiological and agronomic characteristics of two hybrids of maize (Zea mays L.). A two-site field experiment was carried out using a randomized complete block design with three replications and a split-factorial arrangement. A water deficit (WD) was induced by withholding irrigation at different stages of crop development. The results showed that proline content increased and the relative water content, leaf greenness, 100-kernel weight and grain yield decreased under conditions of WD. The highest IWUE was obtained when maize endured WD at vegetative stage at two sites. The limited irrigation imposed on maize during reproductive stage resulted in more yield reduction than that during vegetative stage, compared with fully irrigated treatment. The 100-kernel weight was the most sensitive yield component to determine the yield variation in maize plant when the WD treatments were imposed in low-sensitive growth stages. The results of the statistical regression analysis showed liner relationships between RGR during a period bracketing the V8 or R3 stages and 100-kernel weight in all the WD treatments. The increase of N supply improved yield and IWUE when maize plant endured once irrigation shortage at vegetative stage. But, the performance of high N fertilizer reduced and eliminated when water deficit imposed once at reproductive stage and twice at vegetative and reproductive stages, respectively. Furthermore, the response of T.C647 hybrid to increase of N supply was stronger than S.C647 hybrid.  相似文献   

18.
Root length density (LV), mid-day leaf water potential (Ψ leaf) and yield of wheat were studied in 1983 – 1984 and 1984 – 1985 on a Phoolbagh clay loam (Typic Haplaquoll) and on a Beni silty clay loam (Aquic Hapludoll) in the Tarai region of Uttar Pradesh under naturally fluctuating shallow (0.4 – 0.9 m, SWT) and medium-depth (0.8 – 1.3 m, MWT) water table conditions with six water regimes: rainfed (I0); irrigation at cown root initiation (I1); at crown root initiation and milk (I2); at crown root initiation, maximum tillering and milk (I3); at crown root initiation, maximum tillering, flowering and milk (I4); and at crown root initiation, maximum tillering, flowering, milk and dough (I5). Maximum rooting depth (0.8 m under SWT and 1.05 m under MWT conditions) was attained at the dough stage (115 days after sowing, DAS) and was more strongly influenced by fluctuations in water table depth than by the water regime. For wet regimes (I2– I5), roots were concentrated at and above the water table interface and had greater horizontal development, whereas in dry regimens (I0 and I1), due to deficient moisture conditions in the upper soil layer (0.45 m) they invaded lower horizons and had a greater vertical distribution Ψ leaf was not significantly affected by water regime (I1– I5) up to 94 DAS during a wet year (1983 – 1984) and up to 74 DAS during a dry year (1984 – 1985), but was significantly affected thereafter. Grain yields with water regimens I1– I5 during a wet year and for the I2– I5 treatments during a dry year at either water table depth were not significantly different, but there was a (non-significant) trend to lower yield with increasing soil water deficit. Under SWT in I2, the average grain yield wsa 5130 kg ha–1 and under the I3 regime, 5200 kg ha–1. Likewise, under MWT in I3, it was 5188 kg ha–1 and under the I4 regime, 5218 kg ha–1. The results indicate that application of irrigation of more than 120 and 180 mm under SWT and MWT conditions, respectively, did not raise yield. Irrigation given as per schedule I2 under SWT and I3 under MWT conditions in the Tarai situation, appears to be more effective than a very wet regime (I5). Received: 9 December 1997  相似文献   

19.
We evaluated the usefulness of short-term trunk diameter variations (TDV) as water stress indicator in field-grown grapevines cv. Tempranillo. Two indices were calculated from TDV, maximum daily trunk shrinkage (MDS), and trunk growth rate (TGR). The seasonal evolution of both indicators was compared with occasional determinations of pre-dawn leaf water potential and stem water potential, measured at early morning (Ψsem) and at midday (Ψsmd) in irrigated and non-irrigated vines. In the second season, the effect of crop load on the vine water status indicators was also studied. Crop load did not affect either the vine water relations or the TDV. All water potential determinations had much lower variability and were more sensitive than both MDS and TGR to water restrictions. The ability of both indices to detect plant water stress varied largely depending upon the phenological period. In fact, MDS and TGR were only able to detect vine water stress during a short period of time before veraison. During this period, TGR was linearly related to both Ψsem and Ψsmd, while for MDS a curvilinear, quadratic equation, better described the relationship with plant water status. After veraison no apparent relationship existed between plant water status and MDS or TGR. Hence, our results question the practical use of both MDS and TGR as variables to automate irrigation scheduling for grapevine.  相似文献   

20.
Water shortage is the major bottleneck that limits sustainable development of agriculture in north China. Crop physiological water-saving irrigation methods such as temporal (regulated deficit irrigation) and spatial (partial root zone irrigation) deficit irrigation have been tested with much improved crop water use efficiency (WUE) without significant yield reduction. Field experiments were conducted to investigate the effect of (1) spatial deficit irrigation on spring maize in arid Inland River Basin of northwest China during 1997–2000; (2) temporal deficit irrigation on winter wheat in semi-arid Haihe River Basin during 2003–2007 and (3) temporal deficit irrigation on winter wheat and summer maize in Yellow River Basin during 2006–2007. Results showed that alternate furrow irrigation (AFI) maintained similar photosynthetic rate (Pn) but reduced transpiration rate (Tr), and thus increased leaf WUE of maize. It also showed that the improved WUE might only be gained for AFI under less water amount per irrigation. The feasible irrigation cycle is 7d in the extremely arid condition in Inner River Basin of northwest China and less water amount with more irrigation frequency is better for both grain yield and WUE in semi-arid Haihe River Basin of north China. Field experiment in Yellow River Basin of north China also suggests that mild water deficit at early seedling stage is beneficial for grain yield and WUE of summer maize, and the deficit timing and severity should be modulated according to the drought tolerance of different crop varieties. The economical evapotranspiration for winter wheat in Haihe River Basin, summer maize in Yellow River Basin of north China and spring maize in Inland River Basin of northwest China are 420.0 mm, 432.5 mm and 450.0 mm respectively. Our study in the three regions in recent decade also showed that AFI should be a useful water-saving irrigation method for wide-spaced cereals in arid region, but mild water deficit in earlier stage might be a practical irrigation strategy for close-planting cereals. Application of such temporal and spatial deficit irrigation in field-grown crops has greater potential in saving water, maintaining economic yield and improving WUE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号