首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil quality deterioration and consequent reduced productivity characterize the Vertisols in the highlands of Ethiopia. The problem is exacerbated by lack of appropriate land preparation alternatives for the major crops in the area. A field experiment was carried out for 6 years (1998–2003) at Caffee Doonsa in the central highlands of Ethiopia to evaluate alternative land preparation methods on the performance of wheat (Triticum durum Desf.), lentil (Lens culinaries Medik L) and tef (Eragrostis tef L) grown in rotation. Four methods of land preparation (broad bed and furrow, green manure, ridge and furrow and reduced tillage) were arranged in a randomized complete block design with three replications on permanent plots of 22 m by 6 m. Broad bed and furrow significantly increased the grain yield of lentils by 59% (from 1029 to 1632 kg ha−1) as compared to the control. On the other hand, reduced tillage resulted in the highest grain yield of wheat (1862 kg ha−1) and tef (1378 kg ha−1) as compared to 1698 kg ha−1 of wheat and 1274 kg ha−1 of tef for the control although the increase was not statistically significant. A gross margin analysis showed that BBF is the most profitable option for lentil with 65% increase in total gross margin. On the other hand, RT resulted in 11 and 8% increase in gross margin of wheat and tef, respectively as compared to the control. Based on the agronomic and economic performances best combinations of crop and land preparation method were: lentil sown on broad bed and furrow, and wheat and tef sown after reduced tillage.  相似文献   

2.
The influence of land use on runoff and soil loss was assessed on two small watersheds in the Eastern Caribbean island of St Lucia, under contrasting land management regimes. The data generated from these watersheds revealed that the soil losses from an intensively cultivated agricultural watershed were 20‐times higher in magnitude than that of a forested watershed both for peak rainfall event and for total duration of analysis. This was due to higher surface runoff rates and exposure of soil to direct raindrop impact within cultivated areas. Whereas the forest canopy cover in combination with higher infiltration capacities of the forested land reduced the erosive runoff from the forest watershed and thus the soil loss. Moreover, the energy intensities of large storms in excess of 40 mm were estimated and found to range between 400 MJ mm ha−1 h−1 and 1834 MJ mm ha−1 h−1. 1
  • 1 Megajoules‐millimeters per hectare‐hour.
  • Soil loss from the agricultural watershed was strongly correlated (R2 = 0·85) to storm energy‐intensity (EI30). However, the correlation of soil loss with the EI30 (R2 = 0·71) was poor for the forest watershed due to the effect of canopy vegetation, which significantly reduced the energy of raindrop impact. Over the study period, cumulative soil losses were 10·0 t ha−1 for the agricultural site and 0·5 t ha−1 for the forest site. 2
  • 2 Metric tons per hectare.
  • The largest storm observed during the study period resulted in erosion losses of 3·78 t ha−1 and 0·2 t ha−1 from the agricultural and forest sites respectively. The regression models were developed using the measured data for prediction of runoff and soil loss over the watersheds of St Lucia under similar conditions. This study contributed towards efficient watershed management planning and implementation of suitable water conservation measures in St Lucia. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

    3.
    Abstract. The effect of grazing pressure on infiltration, runoff, and soil loss was studied on a natural pasture during the rainy season of 1995 in the Ethiopian highlands. The study was conducted at two sites with 0–4% and 4–8% slopes at the International Livestock Research Institute (ILRI) Debre Zeit research station, 50 km south of Addis Ababa. The grazing regimes were: light grazing stocked at 0.6 animal-unit-months (AUM)/ha; moderate grazing stocked at 1.8 AUM/ha; heavy grazing stocked at 3.0 AUM/ha; very heavy grazing stocked at 4.2 AUM/ha; very heavy grazing on ploughed soil stocked at 4.2 AUM/ha; and a control with no grazing. Heavy to very heavy grazing pressure significantly reduced biomass amounts, ground vegetative cover, increased surface runoff and soil loss, and reduced infiltrability of the soil. Reduction in infiltration rates was greater on soils which had been ploughed and exposed to very heavy trampling. It was observed that, for the same % vegetative cover, more soil loss occurred from plots on steep than gentle slopes, and that gentle slopes could withstand more grazing pressure without seriously affecting the ground biomass regeneration compared to steeper slopes. Thus, there is a need for developing 'slope-specific' grazing management schedules particularly in the highland ecozones rather than making blanket recommendations for all slopes. More research is needed to quantify annual biophysical changes in order to assess cumulative long-term effects of grazing and trampling on vegetation, soil, and hydrology of grazing lands. Modelling such effects is essential for land use planning in this fragile highland environment.  相似文献   

    4.
    The increasing problem of landlessness in Ethiopia has put pressure on regional governments to redistribute land. In 1997 and 1998, a major land redistribution was undertaken in the Amhara Region, reducing landlessness where implemented. While the impacts of such redistributions have been hotly debated, little empirical evidence exists concerning the actual impacts of redistribution. We find that land redistribution in the Amhara Region has had a positive impact on land productivity, by increasing access to land for farmers who are more interested or able to use purchased inputs such as fertilizer and herbicides. Our results, however, do not show much effect of the recent land redistribution or expectations of future redistribution on land improvement and management. Thus, to the extent that investments in land improvement are necessary for conservation purposes, it appears that policy change to stop land redistributions is unlikely to have a substantial impact on reducing land degradation. Credit and extension programmes and improving land rental markets, however, present better strategies for improving land management in this region of Ethiopia. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

    5.
    Purpose

    Land degradation due to soil erosion is a serious threat to the highlands of Ethiopia. Various soil and water conservation (SWC) strategies have been in use to tackle soil erosion. However, the effectiveness of SWC measures on runoff dynamics and sediment load in terms of their medium- and short-term effects has not been sufficiently studied.

    Materials and methods

    A study was conducted in 2011 to 2015 in the Gumara-Maksegnit watershed to study the impacts of SWC structures on runoff and soil erosion processes using the soil and water analysis tool (SWAT) model. The study was conducted in two adjacent watersheds where in one of the watersheds, SWC structures were constructed (treated watershed (TW)) in 2011, while the other watershed was a reference watershed without SWC structures (untreated watershed (UW)). For both watersheds, separate SWAT and SWAT-CUP (SWAT calibration and uncertainty procedure) projects were set up for daily runoff and sediment yield. The SWAT-CUP program was applied to optimize the parameters of the SWAT using daily observed runoff and sediment yield data.

    Results and discussion

    The runoff simulations indicated that SWAT can reproduce the hydrological regime for both watersheds. The daily runoff calibration (2011–2013) results for the TW and UW showed good correlation between the predicted and the observed data (R 2?=?0.78 for the TW and R 2?=?0.77 for the UW). The validation (2014–2015) results also showed good correlation with R 2 values of 0.72 and 0.70 for the TW and UW, respectively. However, sediment yield calibration and validation results showed modest correlation between the predicted and observed sediment yields with R 2 values of 0.65 and 0.69 for the TW and UW for the calibration and R 2 values of 0.55 and 0.65 for the TW and UW for the validation, respectively.

    Conclusions

    The model results indicated that SWC structures considerably reduced soil loss by as much as 25–38% in the TW. The study demonstrated that SWAT performed well for both watersheds and can be a potential instrument for upscaling and assessing the impact of SWC structures on sediment loads in the highlands of Ethiopia.

      相似文献   

    6.
    The effects of two bed widths (1 and 2 m) and four rainfed cotton‐based cropping systems on soil properties, runoff and erosion were evaluated in a Vertisol (1 per cent slope; 21 g per 100 g sand, 12 g per 100 g silt, 67 g per 100 g clay) in subtropical central Queensland, Australia. The cropping systems were: early cotton (Gossypium hirsutum L.) sown between August and October; wheat (Triticum aestivum L.) sown in May, sprayed out and followed by early cotton; wheat allowed to mature, harvested and followed by late cotton sown between October and December; and grain sorghum (Sorghum bicolor (L.) Moench.) followed by cotton. Land preparation was by minimum tillage and traffic was restricted to the furrows between the beds. Rainfall runoff and soil erosion were monitored with water‐height recorders, flumes and troughs. Soil structure was evaluated as air‐filled porosity of oven‐dried soil in the 0–0.15, 0.15–0.30, 0.30–0.45 and 0.45–0.60 m depths. Soil chemical properties measured in the 0–0.15 m depth were organic carbon, pH (in 0.01 M CaCl2), electrical conductivity (EC1:5) of a 1 : 5 soil : water suspension and exchangeable Ca, Mg, K and Na. In comparison with 1 m beds, 2 m beds resulted in lower runoff and soil erosion, lower exchangeable Na, exchangeable sodium percentage and higher EC1:5/exchangeable Na, higher rate of soil organic matter decrease and better soil structure in the 0–0.15 m depth. Runoff and erosion were reduced, and cotton lint yields increased either by cropping systems sown early to intercept most of the seasonal rainfall or by those which produced a high level of ground cover. Soil physical and chemical properties were best, and runoff and erosion lowest with 2 m beds and cropping systems producing a high level of ground cover. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

    7.
    以南四湖过水区农田为研究对象,在麦玉轮作夏玉米季内设置地表径流水收集装置,探索减少养分径流损失、提高湖区水质的有效施肥模式。结果表明,有机物料覆盖和与土壤混合可有效降低地表水径流量,泥沙径流损失量与径流水量无直接关系;试验区降水的分布和强度特点使农田径流水无机态氮、总氮、可溶性磷和总磷浓度在玉米不同生育阶段内无显著规律,但其浓度在不同处理间受施肥量、品种及类型的影响差异显著;无机氮径流损失以硝态氮(NO3--N)形式为主(NO3--N占无机氮径流总量的82.9%~90.8%);可溶性磷和颗粒磷基本各占流失总磷一半的比例,地表径流水NO3--N浓度对水质产生潜在威胁;玉米生育季内农民习惯施肥处理总氮径流损失量可达11.89kg/hm2,氮磷钾平衡施用、控释氮肥应用、有机肥替代部分化肥以及秸秆还田等处理径流水无机氮和总氮损失量(率)以及磷素地表径流量均显著低于农民习惯施肥(FP)。在保证玉米产量前提下(四个处理较FP分别增产7.7%、5.9%、3.6%和1.5%),为降低养分随地表径流造成的水质污染,上述施肥模式均可在沿南四湖区农田使用,其中控释氮肥的应用综合效果较好。  相似文献   

    8.
    不同整地方式下施肥对夏玉米产量及水氮利用效率的影响   总被引:2,自引:1,他引:2  
    通过连续两年田间试验研究了平作、垄沟及成垄压实等不同整地方式条件下施肥对夏玉米产量、氮肥利用率(NUE)及水分利用效率(WUE)的影响。结果表明,不同整地方式因影响田间土壤水分、养分的运动和分布,从而进一步影响到施肥效果,故不同整地方式条件下施肥可影响玉米产量及主要产量构成因素,如穗重、穗粒数、500粒重等。平地条件下玉米生物学产量及籽粒产量及其主要构成因素最小,成垄压实与垄沟条件下分别较平地条件下提高玉米籽粒产量9.5%~10.3%和4.2%~6.3%。成垄压实与垄沟条件下玉米产量构成因素差异不大。不同  相似文献   

    9.
    10.
    Soil erosion affects soil productivity and environmental quality.A laboratory research experiment under simulated heavy rainfall with tap water was conducted to investigate the effects of anionic polyacrylamide(PAM) application rates(0,0.5,1.0,and 2.0 g m-2) and molecular weights(12 and 18 Mg mol-1) on runoff,soil erosion,and soil nutrient loss at a slope of 5°.The results showed the two lower rates of PAM application decreased runoff while the highest rate increased runoff as compared with the control.Sediment concentration and soil mass loss increased significantly with the increasing PAM application rate.Compared with the control,PAM application decreased K+,NH4+,and NO3-concentrations in sediment and K+ and NH+4 concentrations in runoff,but significantly increased the mass losses of K+,NH4+,and NO-3 over soil surface except for the NH4+ at PAM application rate lower than 1.0 g m-2.PAM application decreased the proportion of K+ loss with runoff to its total mass loss over soil surface from 60.1% to 16.4%.However,it did not affect the NH4+ and NO3-losses with runoff,and more than 86% of them were lost with runoff.A higher PAM molecular weight resulted in less soil erosion and K+ mass loss but had little effect on runoff and NH+4 and NO3-losses.PAM application did not prevent soil erosion and the mass losses of K+ and NO3-under experimental conditions.  相似文献   

    11.
    《Geoderma》2002,105(1-2):21-48
    In undisturbed tropical forest ecosystems, the phosphorus (P) cycle is essentially “closed” with minimal short-term losses or gains of P. The forms and dynamics of soil P, however, can be greatly affected by land use changes, which often involve changes in vegetation cover, biomass production and nutrient cycling in the ecosystem. Sequential extraction and 31P nuclear magnetic resonance (NMR) spectroscopy were used to investigate the influence of land use changes on the amount and structural composition of P in the sub-humid highlands of southern Ethiopia. Samples were collected from surface soils (0–10 cm) of natural forest, tea plantations and cultivated fields (25 years) at Wushwush and from Podocarpus dominated natural forest, Cupressus plantations and cultivated fields (30 years) at Munesa sites. Significantly lower (P<0.05) amounts of total P were found following clear-cutting and long-term cultivation (31% and 39%), and establishment of plantations (21% and 22%) at Wushwush and Munesa, respectively. The largest depletion of sodium bicarbonate-extractable organic P (NaHCO3–Po) (74% and 77%) and sodium hydroxide-extractable Po (NaOH–Po) (67% and 67%) due to cultivation occurred in the sand, followed by the silt (52% and 56%, NaHCO3–Po and 32% and 53%, NaOH–Po) and the clay (33% and 42%, NaHCO3–Po and 28% and 35%, NaOH–Po) size separates from the two sites, respectively. 31P NMR spectroscopy revealed that orthophosphate monoesters were the major organic P compounds (27–66%) followed by orthophosphate diesters (9–27%) and teichoic acids (7–11%). Unknown organic P species accounted for 3–8% (unknown A) and 3–5% (unknown B), whereas phosphonates made up 2–3%. The proportion of diester-P decreased in the order: natural forests (24% and 27%)>plantations (15% and 13%)>cultivated fields (10% and 9%) at Wushwush and Munesa, respectively. The percentages of teichoic acid, unknown A, unknown B and phosphonates also decreased, whereas the proportions of orthophosphate monoesters increased following land use changes. Greater decline in proportions of diester-P and teichoic acids were found in the silt than in the clay size separates, which may be attributed to stabilization of microbially derived organic P structures by closer association with clay minerals and/or sesquioxides. The results of sequential extraction and 31P NMR spectroscopy indicate that continuous cultivation with little or no P input not only decreased the amount, but also influenced the structural composition and bioavailability of P in these tropical soils. Thus measures have to be designed for replenishment and subsequent maintenance of soil P stocks, to ensure sustainable crop production in sub-humid highland agroecosystems of southern Ethiopia.  相似文献   

    12.
    In the Ethiopian highlands, large-scale stone bund building programs are implemented to curb severe soil erosion. Development of soil fertility gradients is often mentioned as the major drawback of stone bund implementation, as it would result in a dramatic lowering of crop yield. Therefore, the objectives of this study are to assess soil fertility gradients on progressive terraces and their influence on crop yield, in order to evaluate the long-term sustainability of stone bunds in the Ethiopian Highlands.

    The study was performed near Hagere Selam, Tigray and comprises (i) measurement of Pav, Ntot and Corg along the slope on 20 representative plots and (ii) crop response measurement on 143 plots. Results indicate that levels of Pav, Ntot and Corg in the plough layer are highly variable between plots and mainly determined by small-scale soil and environmental features, plot history and management. After correcting for this “plot effect” a significant relationship (p < 0.01) was found between the position in the plot relative to the stone bund and levels of Pav and Ntot, which are higher near the lower stone bund, especially on limestone parent material. For Corg and on basalt-derived soils in general no significant relationship was found. Although soil fertility gradients are present, they are not problematic and can be compensated by adapted soil management. Only in areas where a Calcaric or Calcic horizon is present at shallow depth, care should be taken. Crop Yields increased by 7% compared to the situation without stone bunds, if a land occupation of 8% by the structures is accounted for. Yield increased from 632 to 683 kg ha−1 for cereals, from 501 to 556 kg ha−1 (11%) for Eragrostis tef and from 335 to 351 kg ha−1 for Cicer arietinum.

    No negative effects reducing stone-bund sustainability were found in this study. Soil erosion on the other hand, poses a major threat to agricultural productivity. Stone bund implementation therefore is of vital importance in fighting desertification and establishing sustainable agriculture in the Ethiopian highlands.  相似文献   


    13.

    Purpose

    Vegetables are major economic crops in China. Their cultivation usually involves high fertilizer application rates leading to significant losses of N and P to the wider environment, resulting in water contamination and low nutrient use efficiency. Hence, it is a matter of urgency to understand the mechanisms and factors that affect N and P losses in vegetable production systems in order to develop optimum fertilization regimes.

    Materials and methods

    Different fertilization regimes were applied in a long-term chili (Capsicum spp. L.) production soil to study the effects on nitrogen (N) and phosphorus (P) runoff losses, microbial biomass, microbial community, and crop yields. Three fertilization regimes were implemented: control (no fertilizer; CK), farmer’s fertilization practice (FFP), and site-specific nutrient management (SSNM). A fixed collection device was used to quantify the total volume of water output after each precipitation event. All water samples were analyzed for total nitrogen, ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3?-N), total phosphorus (TP), and available phosphorus (AP). Soil samples were collected for analysis of the physicochemical properties and for DNA extraction after chili harvest. High-throughput sequencing was used to further investigate the relationship between the microbial community and nutrient losses.

    Results and discussion

    The SSNM fertilizer regime resulted in a 23.3% yield increase and enhanced agronomic N use efficiency from 11.87 to 15.67% compared with the FFP treatment. Soil available nutrients (i.e., AN and AP) and ATP content increased significantly after SSNM implementation. Under the SSNM regime, N losses decreased by 25.8% compared with FFP but did not lead to significantly different P losses. High-throughput sequencing results showed that each treatment formed a unique microbial community structure. VPA results revealed that the microbial community structure was mainly (50.56%) affected by the interactions between N and P. Mantel results indicated that the soil properties that significantly affected soil microbial community structure followed the order: AP, AK, and salinity.

    Conclusions

    Our study has demonstrated that SSNM not only generates lower N losses but also provides higher contents of soil available nutrients and plant yield, which were mainly attributed to the multiple top dressings and meeting of the plants’ demand with adequate nutrient supplies. The combined data showed that the microbial community differentiation between the different fertilizer regimes was mainly linked to the interactions between N and P in the soil.
      相似文献   

    14.
     A litter bag technique was used to study the decomposition and release of N, P, K, Ca, and Mg from Leucaena leucocephala and L. pallida prunings and cattle manure in a hedgerow intercropping trial conducted in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping or alley farming) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. Manure was the most resistant to decomposition, losing only 15% of its dry matter (DM) in 15 weeks, compared to 41–57% lost by leucaena prunings. Large quantities of K (up to 104 kg ha–1) were mineralized from prunings and manure, but Ca and Mg were mostly immobilized. More N and P were released from prunings than from manure, which resulted in net immobilization of these nutrients in the initial stages of decomposition and net mineralization in later stages. Between the leucaenas more N was mineralized and less Ca and Mg were immobilized when L. leucocephala prunings were applied than when L. pallida prunings were applied. Fertilizer N increased DM decomposition and N mineralization. Mineralization of the nutrients was constrained by lignin and polyphenol contents. It is concluded that leucaena mulch and cattle manure may be significant sources of N and K for crop growth, but external sources of P, Ca and Mg may be required, particularly in acid soils which have low contents of these nutrients. However, this fertility effect has to be evaluated against the competition effect of trees to predict crop response. Received: 27 January 1997  相似文献   

    15.
    The combined effects of erosive rains, steep slopes and human land use have caused severe land degradation in the Ethiopian Highlands for several thousand years, but since the 1970s, however, land rehabilitation programmes have been established to try to reverse deterioration. In order to characterize and quantify the transformations in the north Ethiopian Highlands, a study was carried out over 8884 km2 of the Tigray Highlands of northern Ethiopia. Using Landsat Multispectral Scanner and later Thematic Mapper imagery (1972, 1984/1986 and 2000), historical terrestrial photographs (1974–1975) and fieldwork (2008), we prepared land use and cover maps. For assessing the use of the historical terrestrial photographs, Landsat images from 1972 were classified using two different methods, namely conventional change detection (image differencing) and ground truthing (using the historical photographs of 1974–1975). Results show that the use of terrestrial photographs is promising, as the classification accuracy based on this method (Kappa coefficient 0·54) is better than the classification accuracy of the method based on image differencing (Kappa coefficient 0·46). Major land use and cover changes indicate the following: (1) a gradual but significant decline in bare ground (32 per cent in 1972 to 8 per cent in 2000); (2) a significant increase of bushland (25 to 43 per cent) and total forest area (including eucalypt plantations, 2·6 to 6·3 per cent); and (3) creation of numerous lakes and ponds. The dominant change trajectory (27 per cent of the study area) indicates a gradual or recent vegetation increase. These changes can be linked to the population growth and the introduction of land rehabilitation initiatives, complemented by growing awareness of land holders. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

    16.
    不同透水状况对坡地土壤侵蚀和养分流失的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
     为研究坡地物质迁移的重要过程,通过室内人工降雨模拟试验,研究不同透水状况坡地土壤侵蚀和养分流失的过程与机制。研究结果表明:不透水坡地的初始产流时间比半透水和完全透水坡地提前57min,且土壤侵蚀总量大于其余两者土壤侵蚀量之和;在二次降雨条件下,不透水坡地的土壤侵蚀剧烈,土壤侵蚀量大于其他2种状况之和的5倍;在首次降雨过程中3种不同透水状况的径流养分浓度变化表现一致,仅在降雨75min后开始呈现差异;二次降雨过程中径流养分浓度存在显著差异。因此,存在不透水底层或入渗速率低的犁底层坡地,具有潜在的严重土壤侵蚀与磷钾流失趋势,尤其在初始土壤含水量较高的情况下。为合理配置坡地水土保持管理措施和控制养分流失提供参考。  相似文献   

    17.
    为分析内蒙古鄂尔多斯市伊金霍洛旗在4类土地利用方式(灌木林地、采矿用地、天然牧草地和农地)下,土壤养分质量分数的差异性,运用野外采样和室内化验、分析相结合的方法,测定4种土地类型在0~30 cm土层的土壤有机质和全量氮磷钾质量分数及pH值.结果表明:1)4类土地在0~ 30 cm土层的土壤有机质和全氮质量分数存在显著差异,土壤全磷量和全钾量差异不显著(P<0.05),土壤有机质质量分数依次为农地>天然牧草地>灌木林地>采矿用地,土壤全量氮磷钾最大值分别为天然牧草地、天然牧草地和灌木林地,最小值分别为采矿用地、灌木林地和天然牧草地;2)在垂直剖面上,采矿用地和天然牧草地的有机质质量分数随着土层深度的增加逐渐减小,农地和灌木林地的有机质质量分数最大值出现在20~30 cm深度的土层,4类土地的土壤全氮量和全磷量均有随土层深度的增加而下降的趋势,全钾量随土层深度的变化不明显.4类土地的土壤全氮和全钾质量分数整体而言较为理想,全磷和有机质质量分数欠缺.农地全磷质量分数基本能满足主要作物的生长需求,有机质和全氮质量分数不能满足主要作物的生长需求.本研究可为内蒙古中部工矿开采区土地合理利用以及退化的生态环境恢复等提供科学依据.  相似文献   

    18.
    The effects of different vegetation types on runoff generation and soil erosion were investigated. The study was conducted at the Southern part of West Bank, about 10 Km north-west of Hebron city, during 2005, 2006 and 2007. Five treatments were implemented; forests planted with P. halepensis (F), natural vegetation dominated by S. spinosum (W.S), natural vegetation where S. spinosum was removed (W/o.S), cultivated land (C), and deforestation (Df). Three types of data were estimated in each plot: runoff after each rainfall event, sedimentation at the end of the rainy season, and chemical and physical soil properties. The obtained results indicate that there are significant and important differences in runoff generation and sediment production with respect to the different types of vegetative cover. Forest and natural vegetation dominated by S. spinosum treatments exhibited the lowest amounts of runoff, with averages of 2.02 and 1.08 mm, respectively, in comparison to other treatments. The removal of S. spinosum significantly increased the total amount of runoff and sedimentation compared to the forest and S. spinosum treatments. In addition, runoff significantly increased (4.03 mm) for the Df treatment compared to that of the forest site. The greatest amount of sedimentation was observed in cultivated land and with deforestation.  相似文献   

    19.
     The effects of Leucaena leucocephala and L. pallida prunings and cattle manure on maize nutrient uptake and yield were investigated in a hedgerow intercropping trial in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. For each leucaena species, the experiment had 16 treatments resulting from a factorial combination of four levels of leucaena leaf prunings (no prunings applied; first prunings applied; first and second prunings applied; first, second and third prunings applied), two levels of air-dried cattle manure (0 and 3 t dry matter ha–1) and two levels of N fertilizer (0 and 40 kg N ha–1 as urea). Uptake of N, P and K increased significantly with application of the three nutrient sources, but uptake of Ca and Mg either did not respond or decreased with application of prunings and manure. All the three factors increased maize grain and stover yields significantly, usually with no significant interactions between the factors. At least two applications of prunings were required to significantly increase nutrient uptake and maize yield. Maize in the row closest to the hedge did not respond to these nutrient inputs. It is concluded that hedgerow intercropping, with or without manure application, can increase crop yields moderately (to 2–3 t ha–1 maize grain yields) in the highlands, but P, Ca and Mg may have to be supplied from external sources if they are deficient in the soil. Additional N is still required for higher yields (>4 t ha–1 maize grain yields). However, quantification of the competition effects of the trees is also required to confirm these results. Received: 27 January 1997  相似文献   

    20.
    Little is known on the hydrological behavior of the volcanic ash soils, which are characterized by extremely high porosities and hydraulic conductivities. In this study the occurrence and hydrological effects of water repellency were investigated at a plot scale for different types of land use and volcanic soils in Mexican volcanic highlands from Michoacan, Mexico: [1] fir, pine and oak mixed forest soils developed from lavas, [2] soils developed from volcanic ashes and pyroclastic sediments under sparse fir, pine and oak forest and shrubland, [3] pine and oak forested soils developed from lavas and pyroclastic sediments, and [4] bare soils on recent ash sediments in plain surfaces. Soil water repellency was assessed using the water drop penetration time test and rainfall simulations were performed on circular plots (50 cm in diameter) during 30 min and at an intensity of 90 mm h− 1 in order to study the hydrological response of each area. The return period for storms with a similar intensity in the area is 10 years. The shape and depth of the wetting front after simulated rainfall was also analyzed. Soil water repellency showed a high variability among the different studied zones. Organic matter content, soil texture and acidity were the most important factors for developing hydrophobicity. A wide range of soil water repellency classes (hydrophilic to severely water-repellent soils) has been found in soils under dense fir, pine and oak mixed forests or shrubland, while inexistent or slight water repellency has been observed in soils under sparse forest or at bare ash-covered areas. At a plot scale, marked differences in the hydrological behavior of the studied land use and soil zones were observed after the rainfall simulations. Soil water repellency contributes to fast ponding and runoff generation during the first stages of rainstorms. Runoff was enhanced in water-repellent forested soils (average runoff coefficients between 15.7 and 19.9%), in contrast to hydrophilic or slightly water-repellent soils, where runoff rates were lower (between 1.0 and 11.7%). Shallow and irregular wetting fronts were observed at water-repellent zones, reducing the soil water storage capacity. The implications of soil water repellency in soil hydrology and erosion risk in the area shed light on the soil hydrology of the studied ecosystems, and can contribute to develop better management policies.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号