首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the importance of understanding marine bird response to prey fish, few studies have examined this relationship during winter. Over a 5‐year period, we conducted synoptic marine bird and hydroacoustic forage fish surveys during early (November) and late (March) winter to characterize the factors influencing marine bird and forage fish dynamics at two spatial scales (fish school and bay) within subarctic bays of coastal Alaska, USA. Over 40% of observed marine birds were associated with a fish school (within 150 m of a fish school), although only 20% of fish schools were associated with birds. Seasonally, we recorded significantly more schools during early winter. The marine bird community also shifted from being comprised primarily of marbled murrelets (Brachyramphus marmoratus) and large gulls (Larus spp.) in early winter to common murres (Uria aalge) in late winter. At the school level, marine birds were more likely to be associated with shallow fish schools within 500 m of shore and in smaller prey patches. At the bay level, gull abundance was positively associated with the total number of fish schools recorded, while diving birds were more abundant when fish schools were higher in the water column, in shallower bottom depths, and in areas with more eel grass habitat. Our results indicate the importance of temporal, habitat, and fish school variables as drivers of marine bird presence and abundance, underscoring the complexity of predator–prey dynamics in the marine environment during winter.  相似文献   

2.
The development of the octavolateralis system in fish ancestors created the phenomenon of sensory reafference associated with the fish's own locomotion. Particularly in fish species living and moving in groups, there is a potential to produce complex pressure waves and other water movements interfering with the octavolateralis perception of critical environmental signals. The hypothesis presented is that the development of the octavolateralis system may have initiated, or been a factor in, the evolutionary development of synchronized group locomotion, eventually leading to schooling behaviour. Theoretical models suggest that schooling may be related to a reduction in masking of environmental signals, as well as to survival mechanisms, e.g. confusion of the lateral line and electro-sensory systems of predators by overlapping pressure waves and overlapping electrical fields. The combined effects of reduced masking and predator confusion may help explain why schooling became an evolutionary success. Including pressure waves and other water movements in the model of join, stay or leave decisions might shed some light on fish shoal assortment. A model encompassing the complex effects of synchronized group locomotion on octavolateralis and electro-sensory perception of both prey and predator fish might increase the understanding of schooling behaviour.  相似文献   

3.
Tidal patterns in feeding behaviour are known in several upper trophic level predators. Although harbour seal ( Phoca vitulina richardsi ) movements between resting and foraging areas are often correlated with tidal phase, little is known about tidal influences on seal foraging because it is difficult to make direct observations of predation events. This study sought to determine whether harbour seals exhibit tidal patterns in their at-sea distribution, abundance, and foraging success and to discuss how changes in capture rates or prey types might affect the ability of an individual to meet its daily energy requirement. During 1995–97, seal abundance in the water during flooding tides was significantly greater than median daily abundance. Seals aggregated near a channel constriction. Salmon accounted for 50% and 87% of observed captures of single, large fish in 1996 and 1997, respectively. Predation on schooling fishes involved juvenile sandlance or herring. Large-fish captures were episodic (16.9% and 27.5% of observations with nonzero capture rates) and occurred more often on the incoming tide near constricted water flow. Median per capita capture rates were highest in currents during slower flooding (0.31 fish·seal–1 h–1). Surface attacks on forage fish schools were more common than large-fish captures (54.0% and 66.7% of observations with at least one attack on forage fish). Night-time and subsurface feeding were not assessed. Given what is known about seal food requirements, tidal differences in capture rates are predicted to have a significant impact on both the hunting strategy and energy intake of individuals. Results support the idea that interactions among tidal currents, topographic features, and fish play a role in structuring marine predator–prey dynamics.  相似文献   

4.
《水生生物资源》2003,16(3):299-306
Diel variations in schooling patterns and spatial dynamics during spawning were studied in Norwegian spring-spawning herring (Clupea harengus) off south-western Norway by acoustic surveying, diel cycle experiments and school tracking by sonar, and bottom gillnet sampling. Herring formed horizontally extensive, loosely packed demersal layers shortly after darkness. At night, the fish disappeared in the acoustic dead zone, but lifted off the bottom early in the following mornings. At daytime the herring reorganised into dense pelagic schools. The evening descent to the spawning habitat was considered as part of a precautionary strategy towards visual predators, as the bottom is a high-risk zone for archetypal pelagic fish like herring. Large numbers of gadoids, which are potential herring predators, were present in the area. Herring not ready to spawn dominated the bottom samples in 4 out of 5 days, suggesting that pre-spawning herring followed the descent of ripe herring. The herring spawning layers shifted in a south-easterly direction from day to day in diel spawning waves.  相似文献   

5.
Learned predator recognition and antipredator responses in fishes   总被引:8,自引:0,他引:8  
Early research into the causes of geographical variation in antipredator behaviour in fishes revealed that population differences have an underlying genetic basis. However, evidence from a variety of fish species suggests that learning plays an important role in the development of antipredator responses. Here, we consider the opportunities for learning during the three main stages of a predator–prey interaction: detection, recognition and assessment, and attack avoidance. Much of the evidence for learning is based on the recognition and assessment stage of the predator–prey interaction, but this may reflect methodological biases. We also examine the relative roles of different sensory cues, in particular, vision and olfaction, and the importance of individual vs. social learning. We provide evidence that visual predator recognition skills are largely built on unlearned predispositions, whereas olfactory recognition typically involves experience with conspecific alarm cues. Populations display variation in their propensity to learn, and we predict that ecological factors are likely to mediate the balance between individual and social learning.  相似文献   

6.
《Fisheries Research》2007,84(2-3):319-331
Pacific herring (Clupea pallasii) and walleye pollock (Theragra chalcogramma) are important forage species in the North Pacific Ocean, but their seasonal abundance patterns are poorly known. During three consecutive years of monthly acoustic surveys in Lynn Canal, southeastern Alaska, large schools of herring dominated during winter and were present in a 60-km long submarine gully; this gully appears to provide critical winter habitat for herring when their prey are less available and energy expenditure must be reduced. The salient change in pollock distribution is a shift from shallow waters during summer to deeper waters during winter, such that shallow (<40 m) waters are nearly devoid of pollock during winter. The shift presumably occurs in response to the build-up of secondary productivity during summer and predator avoidance during winter. The seasonal changes in herring abundance drove seasonal changes in predator abundance, as Steller sea lions (Eumetopias jubatus) and humpback whales (Megaptera novaeangliae) preyed upon the winter aggregation of herring. Such seasonal links likely serve an important role in structuring trophic relationships in the North Pacific Ocean ecosystem.  相似文献   

7.
We tested whether the predation dynamics of chub mackerel Scomber japonicus and spotted mackerel S. australasicus on young anchovy Engraulis japonicus relates to individual growth characteristics of the prey and could account for the growth-selective survival predicted by recruitment hypotheses. Juvenile and adult mackerel were sampled along with their young anchovy prey field in 2004 (juvenile mackerel and larval anchovy) and 2005 (adult mackerel and juvenile anchovy) off the Pacific coast of Honshu, Japan. The recent 5-day mean growth rate of larval and juvenile survivors and prey found in the stomach of mackerel was estimated from the otolith microstructure. No significant difference was found between the recent growth of larval or juvenile survivors and that of preyed individuals. We conclude that despite a relatively small body size, the high activity level and predation skills displayed by mackerel prevent fast-growing larvae and early juveniles from benefitting in terms of the expected survival advantage over slow-growers. Hence, growth-selective predation mortality of larval fish would depend on the feeding ecology of the predator rather than predator size. Selection for fast growth is more likely to occur under predation pressure from invertebrate organisms and small pelagic fish specialized on zooplankton, such as herring and anchovy.  相似文献   

8.
实验室条件下麦穗鱼群体动态结构的表达   总被引:1,自引:1,他引:0  
为了探究麦穗鱼群体动态结构的特征参数,以及这些参数可能反映的行为机理,本实验使用2台摄像机从俯视和侧视2个方向同时拍摄由13尾麦穗鱼组成的群体,获取连续时间内麦穗鱼群体中各个体的三维位置数据,对个体间最近邻近距离、视角、转角变化量、个体游泳速度等参数进行分析。结果表明:麦穗鱼个体最近邻近距离多数处于0.5~2 BL,偏好的最近邻近距离为0.6~0.8 BL;麦穗鱼总是将最邻近的个体保持在本鱼80°视野范围内;避免碰撞时,个体鱼转角改变量为0~30°;在无人为干扰的自然环境下,个体鱼以0.75 BL/s左右的速度配合其他个体保持运动速度一致性。实验观察证实,视觉对麦穗鱼个体间的分布起着关键性作用,此外麦穗鱼群体动态结构还受到个体状态(饱食与饥饿)的影响。  相似文献   

9.
Abstract— The predator-prey behavioral interactions between two salmon species, coho salmon ( Oncorhynchus kisutch ) and chinook salmon ( Oncorhynchus tshawytscha ), and their prey species were examined under laboratory conditions. These behaviors were studied to determine the bases for prey selection by salmon in Lake Michigan and ultimately facilitate predictions on shifts or changes in salmon diets. Chinook and coho salmon captured all prey items in the open water portion of the aquarium, and they had similar attack behaviors. Average attack swimming speeds varied from 2.6 to 3.6 m/s, and average escape swimming speeds varied from 2.6 to 2.9 m/s. There were no significant differences in attack swimming speeds and escape swimming speeds. There was a significant difference in median reactive distances between the prey captured and those that escaped. There was no reactive distance (0.00 m) for 96% and 98% of the successfully captured prey by chinook and coho salmon, respectively. Only 4% and 10% of the unsuccessful attacks by chinook and coho salmon, respectively, had no reactive distance (0.00 m). Salmon would repeatedly attack a school and capture individuals separated from the school. Alewives, bloaters and fathead minnows were easy prey because they remained in the open water portion of the aquarium and stayed in schools until only a few individuals remained. The schooling behavior of spottail shiners and emerald shiners was an effective anti-predation tactic against salmon attacks. After some experience with yellow perch, salmon were reluctant to attack them and would often break off attacks on them. When coho salmon were presented with different proportions of bloaters and yellow perch, they significantly attacked and captured bloaters in preference to yellow perch.  相似文献   

10.
A key assumption of hypotheses that link the production of prey for larval fish with year-class strength of fish is that larval growth and condition is food-limited. We tested this assumption by comparing whole-body RNA-DNA ratios of individual Pacific herring, Clupea pallasi , larvae and Pacific sand lance, Ammodytes hex-apterus , larvae from Port Moller, a subarctic Alaskan estuary, with prey concentration and temperature. RNA-DNA ratios were correlated with larval length, but not with prey concentration or temperature. Ratios were not significantly different between a warm, well-mixed station with low prey concentrations and a colder, stratified station with higher prey concentrations. Using RNA-DNA ratios, we classified as starving 11 to 23% of first-feeding (< 13 mm long) herring larvae and 45% of first-feeding (< 7 mm long) sand lance larvae. However, starvation could not have been caused by low concentrations of prey because micro-zooplankton prey concentrations were high enough (16 to 84 prey L_l) to support relatively high rates of growth. Therefore, starving larvae were either abnormal or they were stIII learning to forage. We conclude that the magnitude of starvation among first-feeding herring and sand lance larvae, and, therefore, the total contribution of starvation to year-class strength, is dependent not only on prey concentration, but on the proportion of a population of larvae that can feed effectively.  相似文献   

11.
Correlations between time series of the abundance of predator and prey fish species in heavily exploited western North Atlantic marine fisheries vary temporally but are generally positive in southern, warmer waters and negative in northern, colder ones. The correlations provide an index of trophic structure and dynamics. We construct a framework to quantify critical thresholds between states in which the predator–prey correlations are positive or negative. We do so by developing a quantitative model of the distribution of the correlations between predator (15 species) and prey (8 species) functional groups based on the annual predator depletion rates and bottom temperatures (or alternatively species richness). The model accounts for 58% of the variance of the correlations with a root mean square error of 0.3. This index of trophic structure indicates that warmer, species-rich, southern fish populations resist transformation from positive to negative predator–prey correlations at exploitation rates that can be double those in the colder, relatively species-poor, northern areas. The model can be used to set limits for exploitation rates that preserve the functional relationships between predator–prey groups in emerging fisheries, and to assess the potential for and measures required to achieve recovery of degraded fish communities.  相似文献   

12.
Abstract –  Predator–prey interactions in aquatic food webs depend on the sizes of both predator and prey. In the present study, size-dependent interactions between >70 mm total length pikeperch Sander lucioperca (L.) and four different prey species in the biomanipulated Bautzen Reservoir were investigated. Gape widths of 597 pikeperch were measured, and the stomach contents of 806 specimens were analysed. Additionally, total lengths (TL) and body depths of 1448 prey fish were determined. The highest prey length to predator length ratio (PPR) was 0.63. Total lengths of piscivorous pikeperch and total lengths of prey fish [pikeperch, ruffe Gymnocephalus cernuus (L.) and roach Rutilus rutilus (L.)] were positively and linearly related. This was not the case for prey perch ( Perca fluviatilis L.) as all size groups of pikeperch fed strongly on age-0 perch. This study coupled with results of previous studies suggests that predation by pikeperch can have a major impact on the population dynamics of especially perch.  相似文献   

13.
14.
Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey‐switching hypothesis); (ii) salmon foraging behaviour (refuge‐dispersion hypothesis); and (iii) salmon size and growth (size‐refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey‐switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m?3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge‐dispersion hypothesis was supported by data indicating a five‐fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size‐refuge hypothesis was supported by data indicating that size‐ and growth‐dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery‐reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process.  相似文献   

15.
Predator‐prey interactions can be influenced by the behaviour of individual species as well as environmental factors. We conducted laboratory experiments to test for the influences of two abiotic factors (light intensity and habitat complexity) on predator–prey interactions between walleye Sander vitreus and two prey species, bluegill Lepomis macrochirus and golden shiner Notemigonus crysoleucas. Three light intensities were simulated (day, twilight and night) in the presence or absence of simulated vegetation. Observations of predator behaviour indicated that walleye increased activity and foraging success with decreasing light levels and had most success capturing dispersed, closer prey. While schooling could not be maintained as light levels diminished, prey decreased predation vulnerability by moving into vegetation or higher in the water column. Throughout all treatments, bluegill were more evasive to capture as the number of strikes was similar on both prey but capture rates were higher for golden shiner. Although light intensity and simulated habitat complexity affected predator and prey behaviour, these factors did not interact to influence foraging success of walleye. To fully understand predator and prey behaviours in fishes, an understanding of species‐specific responses to abiotic and biotic factors is necessary.  相似文献   

16.
Predation after release is one of the major concerns of hatchery fish propagation. However, size-specific interaction between predator and prey on the survival of hatchery-released salmonid fish is largely unknown. To understand the size-selective predation risk, 24-h predation experiments were conducted on masu salmon Oncorhynchus masou in tanks. Four ranges of fork length (FL) were examined for masu salmon as a prey, in combination with three ranges of FL for white-spotted charr Salvelinus leucomaenis as a predator. The results show that not only predator and prey sizes, but also interaction between prey size and predator size, strongly affected the survival rate of masu salmon. Predation on masu salmon with the FL exceeding 40% of the FL of white-spotted charr was rare in the experiment. A logistic regression suggests that 37% relative FL of masu salmon to white-spotted charr results in the 50% survival of masu salmon. Our results suggest that adjusting relative size of hatchery fish to the size of local fish predators at the time of hatchery release will have a significant impact on the survival of hatchery fish in the wild. From this perspective, site-specific, adaptive management might be important to improve the effectiveness of hatchery fish propagation.  相似文献   

17.
The concept of a ‘vertical ambush corridor’ is herein introduced to marine ecosystem science. In the open ocean, adequate physical cover from which to launch an unanticipated ambush attack is generally lacking. An available alternative is for a predator to channel its attack vertically upward from below, rendering an unlighted approaching predator extremely difficult for a downward viewing potential prey to visually identify against the profound blackness of the deep ocean background. Moreover, within sub-mesoscale structures wherein the ambient water is sinking, slightly warmer water temperatures within the core of the downward motion results in outward refraction of both sound and light waves, producing sound and light shadow patterns that may reduce the capacity of prey organisms to recognize the approach of an upwardly attacking predator. This suggests that presence of such submarine ‘vambush’ structures may enhance trophic transfer efficiency within marine ecosystems, as well as provide perhaps the best available explanation for such predator behaviours as the evident strong attraction to drifting flotsam and floating fish aggregation devices (FADs), as well as the repeated large amplitude ‘bounce dives’ undertaken by a large number of dominant oceanic predatory fish species. The oxygen constraints faced by water-breathing organisms are posed as controlling factors in the potential ecological operation of these vambush structures, that in turn may have potential vulnerability to the growing global problem of ocean deoxygenation. Increased identifiable habitat granularity represented by such sub-mesoscale features may have important utility in supporting empirical studies and applications of the comparative scientific method.  相似文献   

18.
Abstract – In natural systems, prey frequently interact with multiple predators and the outcome often cannot be predicted by summing the effects of individual predator species. Multiple predator interactions can create emergent effects for prey, but how those change across environmental gradients is poorly understood. Turbidity is an environmental factor in aquatic systems that may influence multiple predator effects on prey. Interactions between a cruising predator (largemouth bass Micropterus salmoides) and an ambush predator (muskellunge Esox masquinongy) and their combination foraging on a shared prey (bluegill Lepomis macrochirus) were examined across a turbidity gradient. Turbidity modified multiple predator effects on prey. In clear water, combined predators consumed in total more prey than expected from individual predator treatments, suggesting risk enhancement for prey. In moderately turbid water, the predators consumed fewer prey together than expected, suggesting a risk reduction for prey. At high turbidity, there were no apparent emergent effects; however, the cruising predator consumed more prey than the ambush predator, suggesting an advantage for this predator. Understanding multiple predator traits across a gradient of turbidity increases our understanding of how complex natural systems function.  相似文献   

19.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

20.
This study was carried out to clarify the role of wild fish, especially Baltic herring, Clupea harengus membras L., in the epidemiology of viral haemorrhagic septicaemia virus (VHSV) in brackish water in Finland. Baltic herring with no visible signs of disease were collected from the Archipelago Sea, the Gulf of Bothnia and the eastern Gulf of Finland. In total, 7580 herring were examined by virus isolation as 758 pooled samples and 3029 wild salmonid broodfish as pooled samples during 2004-2006. VHSV was isolated from 51 pooled herring samples in bluegill fibroblast-2 cells, but not in epithelioma papulosum cyprini cells. The majority of isolations were from the coastal archipelago and from fish caught during the spawning season. Based on glycoprotein (G) gene sequences, the virus was classified as a member of genotype II of VHSV. Pairwise comparisons of the G gene regions of herring isolates revealed that all the isolates were closely related, with 98.8-100% nucleotide homology. Phylogenetic analyses revealed that they were closely related to the strains isolated previously from herring and sprat, Sprattus sprattus (L.), in Gotland and to the VHSV isolates from European river lamprey, Lampetra fluviatilis (L.), in the rivers that flow into the Bothnian Bay. The infection in Baltic herring is likely to be independent of the VHSV Id epidemic in farmed rainbow trout, Oncorhynchus mykiss (Walbaum).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号