首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is the first in a series of four,describing the hypothesis and approach of acorrelative study between observed data on crowncondition in Europe, monitored since 1986 at asystematic 16 × 16 km grid, and site-specificestimations of various natural and anthropogenicstress factors. The study was based on the hypothesisthat forests respond to various natural andanthropogenic stress factors, whose contributiondepend on the geographic region considered. In view ofthis hypothesis, major stand and site characteristics,chemical soil composition, meteorological stressfactors (temperature and drought stress indices) andair pollution stress (concentrations and/ordepositions of SOx, NOy, NHx andO3) were included as predictor variables. Theresponse variables considered were actual defoliationand changes/trends in defoliation for five major treespecies. The spatial distribution of the averagedefoliation during the period 1986–1995 shows highdefoliation in Central Europe and in parts ofScandinavia and of Southern Europe. There are,however, sharp changes at country borders, which aredue to methodological differences between countries.The spatial distribution of the calculated trends showa distinct cluster of large deterioration in parts ofCentral and Eastern Europe and in Spain and a ratherscattered pattern of positive and negative trends for most of Europe, indicating that other factors than airpollution only have a strong impact on defoliation.The limitations of the study are discussed in view ofthe quality of the considered response and predictor variables.  相似文献   

2.
Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 mi away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed recently in order to estimate the long range transport of air pollutants. The models take into account chemical transformations as well as deposition of pollutants. The calculations will be compared with observations from airplanes and surface stations. A simple model has been integrated over a long period of time in order to derive the best value for the decay rate of SO2. This best value is based on a day-by-day comparison with surface observations.  相似文献   

3.
Based on combined information available from air quality monitoring data and long-range transport models, European population exposure to SO2, NO2 and O3 has been estimated. This information has been combined with the results of epidemiological studies assessing strength of association between the exposure and health effects to estimate an impact of the pollution on health in Europe. The analysis indicates that a considerable number of health problems, ranging from mild irritation of the respiratory system to increased mortality, can be attributed to short-term peaks of pollution observed in Europe. Chronic impacts of prolonged elevated SO2 levels on lung function are estimated to occur in close to10 million people in Europe.  相似文献   

4.
The stress by air pollution at the systematicPan-European 16 × 16 km2 forest (crown) condition monitoring network, is discussed by comparingsite-specific estimates of critical and presentconcentration and deposition levels for S and Ncompounds and ozone. Results indicate that theexceedance of critical levels, related to directabove-ground impacts, decrease going from O3 >SO2 > N compounds. Critical N loads related toeffects on the forest understorey are exceeded atapproximately 25% of the plots, located mainly inWestern and Central Europe. Critical N loads relatedto effects on trees are hardly ever exceeded, but mostlikely, this is an under estimate. Critical aciddeposition levels are exceeded at approximately 30%of the plots with a low base saturation, where acidinputs may release toxic Al. This is especially thecase in Central and Eastern Europe, where presentloads are high and in boreal forest in SouthernScandinavia where critical loads are low. Although theuncertainties in the calculated exceedances is large,the spatial pattern, which is most important for acorrelative study, seems reliable, implying that thecritical load concept is suitable for regional risk assessments.  相似文献   

5.
In this work we present experimental evidence in support of a new approach for investigating the dependence of sap velocity on atmospheric water demand and soil moisture supply. In this method, sap velocity is defined as the product of two components: the first describes the ‘shape’ of the radial profile of sap velocity, which is consistent through time and is likely linked to the species-specific anatomical and structural properties of the conducting xylem; the second, which we define as stem conductance, captures the time-dependent component of sap velocity that is mostly governed by shifts in atmospheric water demand and individual tree water supply. The heat pulse technique was used to estimate radial profiles of sap velocity and transpiration from a sample of 16 mature sugar maples (Acer saccharum) located along a topographic transect in a mixed deciduous forest. Our results demonstrate that: (1) stem conductance is strongly correlated with bulk air conditions (with confidence intervals for all the sampled trees greater than 99% and average R2 of 0.43, 0.57, 0.54 for vapor pressure deficit (VPD), PPFD and net radiation, respectively) and atmospheric water demand (average R2 equal to 0.73) on an hourly basis and that it is independent of tree size; (2) sensitivity of stem conductance to atmospheric water demand in sugar maples is also correlated to variation in local soil water availability (P-value = 0.014, R2 = 0.43) which arises due to a mild topographic gradient (i.e. 20 m of relative relief along 140 m) and relatively shallow soil. Although the sampled trees were subjected to a wide range of atmospheric water demands and soil moistures, the response to changes in environmental conditions is entirely explainable by dynamics of stem conductance rather than the relative fraction of sap flow along the radial profile, as some of the previous studies reported. Overall, our results confirm our theoretical approach and the possibility of partitioning sap velocity variability between either xylem properties or changes in environmental conditions.  相似文献   

6.
Effects of heavy metals on forest nutrient cycling processes were investigated using intact forest microcosms. Baghouse dust from a primary Pb smelter in southeastern Missouri was applied on the microcosms to approximate one annual deposition of metals at 0.4 km from the smelter. Contaminated litter from a forest adjacent to the smelter was also placed on the microcosms. Total dosage of Pb, Cd, Zn, and Cu was 11.0, 0.128, 0.748, and 0.161 mg cm?2, respectively. Sustained increases in leaching rates of Ca and NO3-N were found in microcosms amended with heavy metals. After 20 mo, extractable Ca, NH3-N, NO3-N and dissolved organic carbon (DOC) were significantly lower in treated soil to a depth of 5 cm. In addition, extractable NH3-N, NO3-N and DOC were significantly lowered to a depth of 10 cm. Results from this experiment indicate that forest microcosms can be used for determining the effect of heavy metals on forest ecosystems.  相似文献   

7.
A survey of leaf and needle losses of European forests in 1993 revealed that 23% of the total forested area had defoliation of more than 25%. The focus of this defoliation is in Central Europe, namely in Poland, Slowakia, Czech Republic, and Germany. The annual surveys of leaf losses and discoloration indicated only small changes during the last years for the coniferous forests in Germany. However, the increasing leaf losses of oak and beech during the last years were alarming. Evaluating the potential relation between air pollutant deposition, soil changes and forest damage, we focus here on the recent changes in deposition and soil conditions, and their implication on tree root development and drought susceptability of trees. While deposition of SO4 2?, H+ and Ca2+ in many Central European forests decreased in the last decade, input of NH4 + and NO3 ? remained high or even increased. The H+ load of many forest soils today is thus still high compared to weathering rates, but the proportion of the H+ load resulting from turnover of deposited N has increased. Recent effects of changing depositions on acid forest soils were: depletion of soil Al-pools, release of formerly stored soil SO4 2?, accumulation of N in soil organic matter, increasing N availability to trees and decreasing concentration of Ca2+ in the soil solution. We hypothesise that soil acidification and increased N availability will decrease the fine root biomass of trees and shift the rooting zone to upper soil layers. Increased above ground growth, observed in many areas of Europe, will furthermore decrease the root/shoot ratio. This development will finally cause increased drought susceptability of trees and is thus of destabilizing nature. The proposed chain of events might be overlapped by other effects of air pollutants on forest ecosystems, namely direct effects of gases on leaves, nutritional inbalances, and interactions with pests.  相似文献   

8.
Site-specific estimates for various environmentalstress factors were related with measured crowncondition data at a systematic 16 ×: 16 km2 gridover Europe, according to previously statedhypotheses, using a multiple regression approach,including interactions, and lagged effects of stressfactors. Methodological differences among countriesaccounted for >30% of the variation in defoliation.Nevertheless, crown condition was found to varynaturally with tree age, altitude, drought stress and,most likely, also pathogenic fungi and insects.Significant impacts of air pollution (specificallyozone but also NOx, SOx and acid deposition)were found at regional levels in parts of centralEurope, particularly for deciduous species. Impactsseemed less significant for conifers, especially forspruce, but this might be affected by confoundingeffects or strong correlations between (a harsh)climate and (low) atmospheric deposition in the areawhere spruce predominates. National studies indicatethat ozone and acid deposition can have a significanteffect on the defoliation of spruce as well. Weconclude that while forest condition varies naturally,continued emissions will contribute further to forestdecline in the long term.  相似文献   

9.
Aphids are frequently found on conifers, but mass outbreaks are seldom reported. On trees stressed by air pollutants the natural resistance can be broken and insect attack combined with pollution stress may promote plant damages. To evaluate effects of air pollution on conifer aphids Scots pine and Norway spruce seedlings have been exposed to gaseous pollutants (O3, SO2 and NO2) in growth chambers. The studied aphid species were Cinara pilicornis Hartig on Norway spruce, C. pinea (Mordv.) and Schizolachnus pineti Fabr. on Scots pine in SO2 fumigations and S. pineti in O3 and NO2 fumigations. C. pilicornis nymphs had peaked dose response to SO2 concentration. Both the first and third instar larvae of C. pilicornis showed highest mean relative growth rate (MRGR) at 100 ppb SO2 concentration. MRGR of C. pinea peaked at 50 and 150 ppb SO2 The response of S. pineti was more inconsistent During fumigation the peak MRGR of S. pineti was at 100 ppb and after exposure at 50 ppb SO2. MRGR of S. pineti nymphs was not significantly affected during fumigation or after the end of fumigation experiment by 100 ppb O3 or 100 ppb NO2 or the mixtures. The results suggest that SO2 affects more distinctively on aphid performance on conifers than O3 or NO2. Especially stem-feeding aphids on spruce can exploit physiological disturbance of host plant under pollution stress.  相似文献   

10.
Plant secondary compounds have an important role in defense responses against herbivores and pathogens. This study summarises published and some unpublished data from a series of fumigation experiments where Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were exposed to different concentrations of gaseous air pollutants, ozone (O3), sulphur dioxide (SO2) or nitrogen dioxide (NO2), in growth chambers. Concentrations of monoterpenes, resin acids and total phenolics were studied. Overall, needle monoterpenes were not affected by pollutants. Only very high level of O3 (600 ppb) decreased concentration of some individual monoterpenes in pine needles. O3 did not have effect on concentrations of resin acids in pine needles. In contrast, the concentration of some individual resin acids increased in O3-exposed pine shoots and in O3-exposed needles of one spruce clone. The highest dose of SO2 decreased concentrations of resin acids in pine needles, but low exposure levels did not have effects. However, SO2 had no effects on the resin acids concentrations of spruce needles, except some minor individual compounds were affected in clonal spruces. Increased concentrations of resin acids was found in pine shoots exposed to NO2. Total phenolics of needles were not affected by pollutants. These observations suggest that among secondary compounds there is variation in sensitivity to air pollutants and genetically different trees have different responses to air pollutants.  相似文献   

11.
The vigor of Norway spruce stands in the Bohemian Forest of Austria was correlated with site factors, informations on historic land use, and chemical properties of the soils and spruce needles. The study confirmed that trees on west exposed slopes and plateaus in higher elevation have lower crown densities. The soils in the area are generally low in base saturation. Historical land use, such as litter raking, grazing and burning of biomass for potash led to nutrient depletion. Increasing deposition of atmospheric N during the last decades alleviated N stress, but increased Ca and Mg stress. N∶Mg ratios in needles of declining stands are wide, indicating N induced nutritional imbalances. PH values in the mineral topsoil are very low on W-slopes and plateaus. Measurements of pollutant deposition at three different sites indicate a strong influence of aspect and elevation on input rates. In a southwest exposed stand and a stand on a hilltop, facing the prevailing winds, substantially more S and N was recovered in the throughfall than in northeast exposed stand. Deposition rates in the open did not differ significantly. High NO3 ? concentrations in the soil solution of the southwest exposed site indicate N saturation of the system. In order to test the hypothesis that mineral deficiency and nutritional disorders contribute to the poor vigor of these stands, fertilizer experiments were established. Fertilization with a combination of an organic fertilizer (BACTOSOL**)) and a magnesite fertilizer (BIOMAG*)) significantly improved crown density, growth, seed viability, and mineral nutrition as inferred from foliar analysis. NO3 ? leaching in the combined BACTOSOL+BIOMAG treatment increased during the first and second growing season after fertilization but leveled off to values typical for the control plots after three years. Mg content of the soil solution increased both in the BIOMAG and the combined BACTOSOL+BIOMAG treatment. These experiments show that the nutritional status and the resilience of declining forests in the Bohemian Forests of Austria can be easily improved by proper fertilizer treatment.  相似文献   

12.
在多雨湿润地区,涝渍胁迫与大气温、湿度共同影响作物。研究发现:作物相对产量与涝渍胁迫指标和降渍过程的大气温、湿度指标之间有密切的相关关系,其中,涝对作物的影响是第一位的;作物关键生育期受单过程涝渍胁迫时,涝后10 d内不出现高温,渍对作物的影响居第二位,出现高温天气(日最高气温不低于35℃),则渍的影响小于高温天气的影响;在多个涝渍过程连续发生的条件下,涝后10 d内日最高气温≥35℃的天数对产量的影响大于地下水埋深小于80 cm的累积作用时间对产量的影响。  相似文献   

13.
水分胁迫对旱作水稻产量与养分吸收的影响   总被引:6,自引:0,他引:6  
采用高砂土充填的PVC土柱模拟地下水埋深来控制土壤水分状况,研究不同程度的水分胁迫对水稻产量及养分吸收的影响。结果表明:在地下水埋深10~50 cm范围内,随埋深深度的增加,水稻生物学产量及经济产量有不同程度的降低。适当的地下水埋深有利于水稻作物对氮素的吸收和钙、氯元素的累积,促进水稻体内可溶性总糖和蔗糖含量的增加;但地下水埋深过大则不利于水稻作物对磷、镁、钠等元素的吸收,并妨碍成熟期籽粒中钾向秸秆的回流。  相似文献   

14.
The theoretical background of modeling the gap fraction and the leaf inclination distribution is presented and the different techniques used to derive leaf area index (LAI) and leaf inclination angle from gap fraction measurements are reviewed. Their associated assumptions and limitations are discussed, i.e., the clumping effect and the distinction between green and non-green elements within the canopy. Based on LAI measurements in various canopies (various crops and forests), sampling strategy is also discussed.  相似文献   

15.
16.
The concentrations of total airborne bacteria, respirable endotoxins, ammonia, and respirable and inhalable particles were monitored in 160 piggery buildings in Australia between autumn 1997 and autumn 1999. The overall mean airborne bacteria, respirable endotoxins, ammonia (NH3), and inhalable and respirable particle concentrations measured were 1.17 x 10(5) cfu m(-3), 33.1 EU m(-3), 3.7 ppm, 1.74 mg m(-3), and 0.26 mg m(-3), respectively. The characteristics of the buildings and management systems used were documented at the time of sampling. A multifactorial general linear model (GLM) statistical procedure was used to analyze the effects of housing and management factors on the concentrations of the airborne pollutants. Both airborne bacteria and respirable endotoxin concentrations were affected by building classification (type), and respirable endotoxin concentrations were positively correlated with increasing humidity. The concentrations of airborne bacteria increased as the level of pen hygiene (cleanliness) decreased. The NH3 concentrations were primarily affected by level of pen hygiene, building volume, pig flow management, and season. Building classification, pig flow management, season, building volume, ventilation rates, and temperature affected inhalable particle concentrations. Respirable particle concentrations were primarily affected by building classification, pen hygiene, pig flow management, season, ventilation rates, temperature, and humidity. These findings suggest that environmental improvement strategies (such as improved cleaning, ventilation, and temperature control) are likely to reduce airborne pollutant concentrations in pig buildings and in the environment, thus improving the health and welfare of both pigs and farm staff.  相似文献   

17.
Multi-ion miscible displacement experiments were conducted
  • 1 This paper is based on the M.S. thesis of the senior author. Chen Wenlin is now Research Associate at the Institute of Geography of the Academia Sinica, Beijing 100012, P.R. China.
  • with saturated soil columns under steady-state flow conditions. The experiments were carried out with four ionic species (Ca2 Na+, SO42 and CI and the columns were 30 cm long. The experimental data were used to evaluate the multi-ion convective-dispersive miscible displacement model, developed in Part I of this study. Some parameters needed for this model were estimated with simplex and nonlinear least-square fitting methods. It was found that the model described the observed break through curves satisfactorily, when the soil matrix-solute interaction was described as an exchange process instead of an adsorption process.  相似文献   

    18.
    The occurrence and distribution of heavy metals in the water of Lake Mariut, a heavily polluted brackish water lake in Egypt, and their accumulation in the different parts ofTilapia fish in this lake were studied. The variations in concentrations of the metals (Zn, Cu, Fe, Mn, and Cd) in the lake water are mostly due to variations in the discharge rate of dumped wastes. The mean concentrations of these metals in different fish parts were much higher than those in the lake water.  相似文献   

    19.
    This paper presents a novel theoretical framework for the study of individual tree sap flow that incorporates both spatial and temporal variability in sap velocities. In this formulation, the instantaneous sap velocity at any point in the radial profile of xylem tissue is defined as the product of a time-invariant sap velocity distribution and a time-varying term which is defined as a stem conductance. We hypothesize that the characteristic distribution of sap velocity is relatively uniform both within individual trees and between trees of the same species if location in the xylem tissue is expressed in normalized units relative to the total xylem depth (i.e. tree size). Experimental evidence confirms our hypothesis in the case of a population of sugar maples in a mixed deciduous forest and dwarf apple trees in an orchard, despite the fact that observations were drawn from a wide range of tree sizes and under varying soil moisture levels and atmospheric conditions that determines water demand. Furthermore, profiles of sap velocity and resulting integrals of total sap flow exhibit significant reduction in bias (by 30–40%) in comparison to prior methods used to extrapolate point observations of sap velocity. The method we describe exhibits the greatest improvement when only a small fraction of the total sapwood is measured, which is the typical scenario for most applications. While these results require further confirmation in order to be generalized, they nevertheless offer the basis to improve both the specific sampling strategies used to estimate whole-tree transpiration using sap velocity probes as well as methods employed to upscale water use of individual trees to larger scales for evaluation of landscape water balance.  相似文献   

    20.
    Heavy metals and persistent organic pollutants from atmospheric deposition and from fertilizer and pesticide applications are important hazardous substances in forest soils. Data are presented showing that these substances preferentially accumulate in the upper humic horizons of the soils. Another group of substances to be considered in relation to the chemical time bomb concept are the components of humus and soil minerals, mainly nitrogen and metals, which May, be mobilized and thus threaten groundwater quality. Forestry management practices such as thinning, cropping, fertilization and liming are discussed as potential triggers for the mobilization of harmful substances. in this context, The turnover (build-up and mineralization) of organic matter plays a crucial part. It will be shown, however, that even more danger arises from soil acidification induced by the atmospheric deposition of acidifying pollutants such as sulphates and nitrates.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号