首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forests of the Northern Czech mountains decline due to industrial emissions. To examine the state of soil contamination with PAHs we analyzed the concentrations of 20 PAHs in the O and A horizons of 4 lower and 4 upper slope sites under beech (Fagus sylvatica L.) in the Western (WE) and the Eastern Erzgebirge (EE, Kru?né Hory), the Isergebirge (IS, Jizerské Hory), and the Riesengebirge (RI, Krkono?e) at microsites affected and not affected by stem flow. Average PAH sum concentrations in the organic layers ranged between 2000 and 30000 μg kg?1 increasing in the line WE <RI<EE<IS. PAH concentrations were significantly higher at upper than at lower slope sites indicating long-distance transport. Microsites affected by stem flow had significantly higher PAH concentrations but lower percentages of lower molecular PAHs than microsites not affected by stem flow. This was due to the water collecting effect of the beech bark. Lower molecular PAHs preferentially were sorbed to the bark or leached from the organic layers. PAH concentrations increased from Oi to Oa horizons but decreased in the mineral soil. This was the more pronounced the higher the molecular weight was. The slope of the regression line between the enrichment factors (concentration of a single PAH in the Oa divided by that in the Oi horizon) and the octanol-water partition coefficient decreased as the PAH concentration of the soils increased. This indicates that the microbial activity of organic layers may be reduced by soil contamination. Cluster analysis suggested that the sources of the PAH contamination in the WE were different from the other sites.  相似文献   

2.
For years, biochar has been successfully used for the remediation of polycyclic aromatic hydrocarbons(PAHs) in contaminated soils, not only for improving their removal from soil but also for reducing their uptake by crops. However, the underlying mechanism of biochar application reducing PAH uptake and accumulation in winter wheat remains unclear. Pot trials were conducted on a PAH-contaminated soil amended with bamboo biochar, coconut shell biochar,and maize straw biochar(MSB) for an entire gro...  相似文献   

3.
Purpose

The purpose of this study is to study the major sources, concentrations, and distributions of polycyclic aromatic hydrocarbons (PAHs) in three different types of green space in Shanghai. In addition, we will quantitatively assess the burden of PAHs in the soil, as well as the potential carcinogenic risk of PAHs in humans. These results will provide valuable information for soil remediation and human health risk management.

Materials and methods

A total of 166 surface soil samples were collected in parks, greenbelts, and woodlands. Soils were extracted using accelerated solvent extraction (ASE). PAHs were analyzed by gas chromatography-mass spectrometry (GC-MS). The positive matrix factorization (PMF) model was used to identify major PAH emission sources and quantitatively assess their contributions to PAHs. The incremental lifetime cancer risk (ILCR) was used to quantify the potential health risk of PAHs.

Results and discussion

The average concentrations of ∑15 PAHs are 227?±?95 ng g?1, 1632?±?251 ng g?1, and 1888?±?552 ng g?1 in the woodland, park, and greenbelt soils, respectively. The PMF results show that biomass (33%), coal (21%), vehicles (17%), natural gas (14%), oil (9%), and coke (7%) are the dominant sources of PAHs in the park soils. Diesel (40%), tire debris (30%), biomass (15%), gasoline (9%), and oil (5%) are the main sources in the greenbelt soils. Biomass (48%), vehicles (37%), and coal (15%) are the main sources in the woodland soils. The ILCRs of adults and children who are exposed to PAHs in soils range from 9.53?×?10?8~1.42?×?10?5.

Conclusion

In three types of green space in Shanghai, the dominant PAHs are high–molecular weight (HMW) compounds (≥?4 rings). This may be due to the proximity of the sampling site to emission sources. In addition, low–molecular weight (LMW) PAHs (with 2–3 rings) are relatively unstable, and these compounds are prone to volatilization and degradation. Source identification indicates that biomass combustion is the most dominant PAH source in the park and woodland soils, while vehicles are the dominant PAH source in the greenbelt soils. The ILCRs of adults and children indicate potential health risks, and children have a greater health risk than adults.

  相似文献   

4.
PAHs are mainly produced by combustion processes and consist of a number of toxic compounds. While the concentrations of individual PAHs in soil produced by natural processes (e.g., vegetation fires, volcanic exhalations) are estimated to be around 1—10 μg kg−1, recently measured lowest concentrations are frequently 10 times higher. Organic horizons of forest soils and urban soils may even reach individual PAH concentrations of several 100 μg kg−1. The PAH mixture in temperate soils is often dominated by benzofluoranthenes, chrysene, and fluoranthene. The few existing studies on tropical soils indicate that the PAH concentrations are relatively lower than in temperate soils for most compounds except for naphthalene, phenanthrene, and perylene suggesting the presence of unidentified PAH sources. PAHs accumulate in C‐rich topsoils, in the stemfoot area, at aggregate surfaces, and in the fine‐textured particle fractions, particularly the silt fraction. PAHs are mainly associated with soil organic matter (SOM) and soot‐like C. Although the water‐solubility of PAHs is low, they are encountered in the subsoil suggesting that they are transported in association with dissolved organic matter (DOM). The uptake of PAHs by plants is small. Most PAHs detected in plant tissue are from atmospheric deposition. However, earthworms bioaccumulate considerable amounts of PAHs in short periods. The reviewed work illustrates that there is a paucity of data on the global distribution of PAHs, particularly with respect to tropical and southern hemispheric regions. Reliable methods to characterize bioavailable PAH pools in soil still need to be developed.  相似文献   

5.
Dissolved organic nitrogen (DON) is a significant nitrogen (N) pool in most soils and is considered to be important for N cycling. The present study focused on paired sites of native remnant woodland and managed pasture at three locations in south-eastern Australia. Improved understanding of N cycling is important for assessing the impact of agriculture on soil processes and can guide conservation and restoration soil management strategies to maintain remnant native woodland systems, which currently exist as small pockets of woodland within extensive managed pasture landscapes. Organic and inorganic N pools were quantified, as well as the rates of amino acid and peptide mineralisation in the paired native woodland and managed pasture systems. Soil DON dominated the soil N pool in both land uses, and the proportion of DON to other N pools was greatest at the most N-limited site (up to ∼70% of extractable N). In both land uses soil ammonium and free amino acid concentrations were similar (∼20% of extractable N), and soil nitrate formed the smallest N pool (<∼5% of extractable N). Mineralisation of 14C-labelled amino acid and peptide substrates was rapid (<3 h), and more amino acid was respired than peptide in both the native woodland and managed pasture soils. Soil C:N ratio was important in separating site and land use differences, and contrasting relationships between soil physico-chemical properties and organic N uptake rates were identified across sites and land uses.  相似文献   

6.
The aim of the present study was to elucidate thedistribution of particulate polycyclic aromatichydrocarbons (PAH) in the air of a remote Norwayspruce (Picea abies (L.) karst.) stand.The study encompassed a total of twenty differentcongeners. Particles in ambient air were alternativelycollected by two different Berner cascade impactors atthe field site in Northern Bavaria over a 14-weeksperiod from the end of April through to the end ofJuly 1994 and subsequently analyzed for their PAHcontent. The concentrations of total suspendedparticulate matter (TSP) ranged from 9–31 μg m-3,suggesting that the field site is an area with a lowlevel of airborne particles. There was a negativerelationship of total particle concentrations with theamount of canopy precipitation due to particle washout at precipitation events. The distribution of theparticle masses on the different size fractions witha maximum in the 1-μm range is typical for remoteareas and indicates a medium-range transport. Theaerosol-bound PAH load decreased from spring sampleswith 2–4 ng m-3 to values <1 ng m-3 in the summersamples. Concurrently, the proportion of low molecularweight congeners in the total PAH load declined.Frequently, the highest PAH concentrations (referringto the air) were found in the 0.1–3 μm sizeseparates (accumulation mode). The results suggestthat apart from PAH input to the soil with litter, dryand wet deposition of aerosol particles is animportant pathway of PAH contamination of acid forestsoils in the Fichtelgebirge mountain range.  相似文献   

7.
The extent to which soil phosphorus (P) status affected the incidence of soil phosphate-solubilising bacteria (PSB) and their taxonomic abundance and diversity was examined at three long-term fertiliser trials (Whatawhata, Winchmore and Ballantrae) in New Zealand. Bacteria were isolated from rhizosphere (ryegrass and clover) and non-rhizosphere soils differing in P status. The P-solubilising phenotype was determined on agar supplemented with sparingly-soluble mineral phosphates (Ca2OH(PO4)3 and CaHPO4). The frequency of P-solubilisation in the bacterial population was significantly greater (P < 0.001) in soils of low-P status, demonstrating a selection pressure for this trait based on soil P availability. P-solubilising bacteria from high-P level soils and soils which had not received P fertiliser (nil-P soils) were identified based on 16S rRNA-gene sequence analysis. Across the samples, the P-solubilising community was very rich with 39 genera of PSB found, spanning 24 families and 4 phyla. At Ballantrae and Winchmore, the PSB composition differed (P < 0.05) across soil P status, which was associated with an alteration in abundance of Actinobacteria, Pseudomonadaceae and Moraxellaceae. The phylogenetic composition of PSB differed significantly (P < 0.05) between sites, however nearly half the families were common across all sites, constituting a ‘core community’ of P-solubilising bacteria for these New Zealand pasture soils. As the abundance and composition of P-solubilising bacteria are under strong selection pressure affected through farm management strategies, better understanding of their ecology provides the opportunity to increase the availability of soil P for plant-uptake.  相似文献   

8.
The content and composition of the polycyclic aromatic hydrocarbons (PAHs) in the conjugated systems of [arable soil]-[above-ground plant organs] in background (reference) and contaminated regions were studied. The coefficients of the biological uptake of PAHs by plants (K bPAH) were determined for different PAH concentrations in the soil. Correlations of the PAH accumulation rate in plants with the physicochemical properties of the PAHs—the solubility, hydrophobicity, volatility, and chemical activity (polarizability and ionization potential)—were revealed. The high accuracy, sensitivity, and information value of the standardized parameters K b were shown (with K bPAH as an example) for the quantitative study of the accumulation mechanisms of substances by plants compared to the average arithmetic values of their concentrations in the plants.  相似文献   

9.
Ma  Junwei  Gao  Chao  Yan  Hongxia  Li  Yuqian  Chen  Jiajun  Zhao  Yan  Xia  Xinghui 《Journal of Soils and Sediments》2019,19(12):3945-3953
Purpose

Without precaution to deal with gas emissions and leachate generation, dumpsites have become a severe environmental problem in many developing countries. The objectives of this study were to investigate the pollution status of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soil in rural areas of China and to verify phytoremediation effectiveness with Sedum alfredii Hance and alfalfa (Medicago sativa L.) under complex pollution conditions in PAH-contaminated soil.

Materials and methods

In this study, we collected soil cores from four dumpsites in rural areas of North China (Hebei Province) for analysis, and correspondingly conducted an in situ phytoremediation experiment using Sedum alfredii Hance and alfalfa (Medicago sativa L.) at one of these sites, monitoring the total PAH concentration in soil.

Results and discussion

Results showed generally moderate pollution by PAHs in soil samples from dumpsites with pockets of heavy pollution. PAH concentrations in dumpsite soil ranged from 827 to 1101 ng/g (dry weight). High-molecular-weight PAHs were present in higher proportions at oldest dumpsite in operation. Certain molecular ratios of PAHs can be used to diagnose the source of PAHs in soil, and it indicated that the main sources were combustion of domestic coal and biomass, as well as the automobile exhaust and kitchen exhaust. A 17-month in situ phytoremediation experiment resulted in the effective removal of PAHs in the Sedum alfredii and alfalfa plots, with total PAH concentrations decreasing by 82.4% and 81.3%, respectively. Furthermore, PAH concentrations in plants correlated to plant growth conditions.

Conclusions

This study indicated that the soils of the dumpsites were generally moderately polluted by PAHs, and some parts of the area were heavily polluted. Both Sedum alfredii and alfalfa absorbed PAHs from soil, and PAH concentrations in these two plants correlated to the growth conditions of the plants. Phytoremediation can effectively be used for PAH removal in open dumpsites.

  相似文献   

10.
During the past few decades, Mexico has been converting tropical dry forest (TDF) into cropland and pasture, with land degradation expressed as soil erosion being the main environmental consequence. The factors and processes influencing soil erosion are related to scale. At a microscale, the stability of soil aggregates has a significant impact on soil erodibility and strongly influences other soil properties. However, at plot and watershed scales, these relationships are less well known. The relationships between the distribution of soil aggregate size, soil properties and soil erosion were examined for two soil geomorphological units (hillslopes over granite and hillslopes over tuffs) and three land uses (TDF, unburned pasture and burned pasture) within the Chamela watershed of west–central Mexico. To evaluate soil aggregation as a parameter for upscaling soil erosion, the researchers measured microtopographic features at plot scales and interpreted 1:35,000 panchromatic aerial photographs at a watershed scale. Analysis of variance indicated significant differences in soil organic carbon (P < 0.05) and soil moisture (P < 0.01) contents between the two soil geomorphological units, and field tests showed differences in soil texture and structure.  相似文献   

11.

Purpose

Heavy metals often occur as co-contaminants with polycyclic aromatic hydrocarbons (PAHs) and reportedly have adverse effects on biodegradation. In this study, the development of 14C-phenanthrene mineralisation in soil co-contaminated with aged or freshly added Al or Fe amendment was assessed.

Materials and methods

14C-phenanthrene mineralisation was assessed using respirometry; respirometers incorporated a Teflon-lined screw-capped CO2 trap containing 1-M NaOH within a glass scintillation vial. The production of 14CO2 was assessed by the addition of Ultima Gold liquid scintillation fluid to the CO2 traps and subsequent liquid scintillation counting. Enumeration of phenanthrene-degrading bacteria was achieved by counting the colony forming unit count using the spread plate method.

Results and discussion

This investigation considered the effects of Al and Fe (50, 100, 250 and 500 mg/kg) on 14C-phenanthrene biodegradation in soil over 63-day contact time. Fresh Al amendments at lower concentrations (50 and 100 mg/kg) stimulated phenanthrene catabolism (p <0.05) at t?=?21 and 42 days which may reflect an ‘Arndt–Schulz’ effect, but phenanthrene catabolism was significantly reduced (p <0.05) in 500 mg/kg aged Al this could be due to Al toxicity to phenanthrene degraders. Phenanthrene mineralisation was stimulated in the highest Fe concentration (500 mg/kg) in aged and fresh Fe amendments at t?=?21 days. This could be because Fe is an essential requirement for microbial growth.

Conclusions

The impact of Al or Fe on the catabolism of 14C-phenanthrene was dependent on incubation time and Al was more toxic than Fe to soil PAH catabolic activity. This could be because Al is a non-essential microbial requirement. Bioremediation of soils co-contaminated with PAH and heavy metal is a complex problem; therefore, studies on the impact of metals on PAHs biodegradation highlight the risks and biodegradation potential in contaminated soil.  相似文献   

12.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil.

Materials and methods

Experimental microcosms containing soil spiked with different concentrations of Ace and BaA were inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs.

Results and discussion

P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg?1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg?1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg?1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace.

Conclusions

The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.  相似文献   

13.
 The amount, quality and turnover of soil P is heavily influenced by changes in soil management. The objective of this study was to investigate the effects of deforestation and pasture establishment on the concentrations, forms and turnover rate of soil P in mountain soils of the Alay Range, Khyrgyzia. A sequential extraction was applied to distinguish soil P pools. We used particle-size fractionation to follow the dynamics of different P pools in soils under forest and pasture and 31P-NMR spectroscopy to investigate the structure of alkali-soluble P forms. In the A horizons of the forest soils, total soil P concentration was 1093 mg kg–1, organic P (Po) representing 46% of the total P. Deforestation followed by pasture establishment not only increased significantly (P<0.01) the total P concentration (1560 mg kg–1) but also the contribution of Po to total P was increased by 17%. Pasture soils had significantly higher P pools than forest soils except highly labile inorganic P (Pi NaHCO3) and primary Pi (Pi HCldil). Both in forest and pasture soils stable P increased with decreasing particle size (coarse sand 50%, clay 80% of total P) and primary P decreased with decreasing particle size. Phosphate monoesters and diesters represented 80% of P identified by 31P NMR. Low monoester to diester ratios in the alkali extracts of forest and pasture soils indicate low microbial activity. This is consistent with high C/Po ratios and high stable Po concentrations in the fine earth of forest and pasture. Received: 10 March 1999  相似文献   

14.

Purpose

Thaumarchaeota is an ecologically relevant archaeal phylum which may significantly contribute to global nitrogen cycling. Thaumarchaeotal abundance, composition, and activity can be changed by soil pH and pollutants such as toxic metals. This study aims to examine the responses of thaumarchaeotal community to soil pH variation and polycyclic aromatic hydrocarbon (PAH) pollution which may co-occur in agricultural soils.

Materials and methods

Field soil samples were collected from agricultural land impacted by both acidification and PAH contamination. Thaumarchaeotal abundance and composition were assessed using molecular approaches targeting 16S rRNA or amoA genes and were linked to environmental factors by correlation and canonical correspondence analysis (CCA). To evaluate the short-term responses of Thaumarchaeota to PAHs, additional soil microcosms amended with either three selected PAHs were established. Changes in thaumarchaeotal communities during the incubation were monitored.

Results and discussion

A significant correlation between thaumarchaeotal gene abundance and soil pH was observed within field samples, with the I.1a-associated group enriched when pH <5.0. CCA suggests that the community variation was primarily related to soil pH. In contrast, the effects of PAHs were minimal. In soil microcosms, high concentrations of PAHs persisted after the 4-week incubation. Independent of the PAHs added, thaumarchaeotal amoA abundance slightly increased and the compositions were stable at the end of the incubation. This might be associated with the pollutants bioavailability and potential microbe-PAH interactions in the soil.

Conclusions

Soil pH variation strongly shapes the agricultural soil thaumarchaeotal community, whereas PAH effects appear to be marginal even in the presence of high concentrations of pollutants. The complicated interaction between soil matrix, pollutants, and Thaumarchaeota requires further study.
  相似文献   

15.
In a rural community (Stephanskirchen, Southern Germany) near a waste incineration plant 7 soils, sewage sludge, waste incineration residues, the gutter sediment of a family home, and mosses were sampled to determine the total concentrations of Cd, Pb, Zn and 20 PAHs. Representative samples were used to measure NH4NO3- and EDTA-extractable Cd, Pb, and Zn as well as 20 PAHs in particle size separates (clay, silt, fine and coarse sand). Sites near the main road, hill top, and forested sites contain up to 1.24 mg Cd, 888 mg Pb, and 279 mg Zn per kg. The heavy metal concentrations of the sewage sludge, the gutter sediment, and especially the waste incineration residues are extremely high (up to 57 mg Cd, 3300 mg Pb, and 5700 mg Zn per kg). The extractability of Pb and Zn with NH4NO3 is low (< 5%), that with EDTA is high (up to 71.2% of total Cd, 82.5% of total Pb, and 47.2% of total Zn). The sum concentrations of PAHs range between 0.4 and 470 mg kg?1. The silt has the highest PAH concentrations of the particle size separates. High saturation of organic matter with PAHs in the sand indicates high recent PAH deposition. Selected ratios of single PAHs reveal diesel and gasoline exhausts as main sources for PAH. Principal component and cluster analysis show that the pollutant pattern depends on the Corg concentration and on the time passed since deposition. There is no significant influence of the waste incineration emissions on the heavy metal and PAH concentrations.  相似文献   

16.
Polycyclic Aromatic Hydrocarbons in Soils from European High Mountain Areas   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) were analyzed in 70 soils distributed in mountain areas such as Montseny (300?C1,700 m), Pyrenees (1,500?C2,900 m), Alps (1,100?C2,500 m), and Tatras (1,400?C1,960 m). Average total PAH concentrations, excluding retene and perylene, were about 400 ng/g in the Pyrenees and 1,300?C1,600 ng/g in the other mountain ranges. No correlations between PAH concentrations and total organic carbon were observed. Retene was the major PAH in the Pyrenean soils of lower altitude. No altitudinal dependence was found between soil PAH concentrations and elevation for the whole dataset. However, in the Tatra soils a statistically significant correlation with altitude was observed involving higher concentrations at higher altitude. This correlation was due to the statistically significant altitudinal dependence of the more volatile PAHs. Another observed altitudinal trend concerned the benz[a]anthracene/(benz[a]anthracene + chrysene + triphenylene) and the benzo[a]pyrene/(benzo[a]pyrene + benzo[e]pyrene) ratios that exhibited a decrease in the more chemically labile compounds, benz[a]anthracene and benzo[a]pyrene, respectively, in the soils located at higher altitude. This observation is consistent with the expected higher photooxidation at higher mountain altitude.  相似文献   

17.
The aim of the present study was to investigate the uptake of 16 PAHs by willow (Salix viminalis) from soil amended with contaminated sewage sludge. Uptake experiments were conducted on field plots using sludge applications of 0, 30, 75, 150, 300, and 600 Mg ha?1. The total PAH content of control soil and sludge were 49.6 μg kg?1 and 5713 μ g kg?1, respectively. The concentrations for the 16 PAHs listed as priority pollutants were measured for soil and plant tissue samples obtained at 0.5, 1.5, 2.5, and 3.5 years. Soil total PAH content decreased significantly within the first half year, followed by minimal changes over the subsequent three years of treatment. PAH analysis was carried out on a HPLC-UV. Total PAH content in control plants was 3.6–7.3 μ g kg?1 for shoots and 13–27 μ g kg?1 for leaves. Treated plant tissue content was higher with shoots and leaves containing ~5.5–17.6 and 13.5–33.8 μg kg?1, respectively. Plant total PAH content did not show a significant trend relative to controls with respect to time. However, uptake did increase in relation to an increased sludge application. Bioconcentration factors (BCF), adjusted by control values, were calculated for total PAH content. BCF values were highest for the initial sampling (6 months) and did not show a significant temporal relationship. BCF values did decrease with increasing sludge application. With respect to individual PAHs, elevated plant tissue concentrations were measured for “light” PAH (e.g. naphthalene, phenanthrene, acenaphthalene) with leaf BCF values correlated with solubility and organic partitioning coefficients.  相似文献   

18.

Purpose

Little information is available heretofore on the gradient distribution of persistent organic pollutants in rhizosphere on a field scale. In this field study, we seek to explore the in situ distribution gradient of polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soil proximal to the roots.

Materials and methods

Clover (Trifolium pratense L.) and hyssop (Hyssopus officinalis L.) grew in situ in the contaminated field soil near a petrochemical plant and were harvested when about 30 cm tall with mature roots. Rhizosphere soils of the plants were sampled including the rhizoplane, strongly adhering soil, and loosely adhering soil. Eleven EPA-priority PAHs were detected in each layer of rhizosphere soils in proximity to the root surface.

Results and discussion

The PAH concentrations followed the descending order of bulk soil, loosely adhering soil, strongly adhering soil, and rhizoplane soil in proximity to the root surface of clover and hyssop. The rhizosphere effect (R, in percent) on PAH distribution clearly decreased with increasing distance from the root, and a more significant decrease was observed for hyssop compared to clover. R values were generally lower for three- and four-ringed PAHs in the rhizosphere, which were more significant in loosely and strongly adhering rhizosphere layers.

Conclusions

Our field observations combined with previous potted studies demonstrated that PAH concentrations in rhizosphere soils increased with distance from the root. Results of this work provide new information on the fate of PAHs in rhizosphere.  相似文献   

19.
The aims of this study were to: (i) assess the impact of hay and fertilizer application on organic matter (OM) fractions (dissolved organic matter (DOM), light fraction organic matter (LFOM, <1.0 g cm−3), heavy fraction OM (HFOM, <1.7 g cm−3)), carbon (C) and nitrogen (N) cycling processes and microbial community size and structure, and (ii) quantify the role of OM fractions to C and N cycling. Soil was collected in 2001 from a field experiment to which grass hay (1996) and/or fertilizer (1995 and 1999) had previously been applied. DOM-C (P<0.05) and DOM-N (P=0.07) were significantly higher in control and fertilized soil than hay and hay+fertilized soil. LFOM and HFOM C and N contents and C/N ratios were significantly (P<0.05) higher in hay+fertilized and hay amended soil than in control and fertilized soil. Potentially mineralizable-N (PMN), microbial biomass-C (MB-C), microbial biomass-N (MB-N) and microbial respiration (CO2) were not affected by fertilizer and/or hay application. Gross N mineralization (Gross Min) and gross nitrification (Gross Nit) rates were significantly (P<0.05) higher in fertilized, hay, hay+fertilized soil than control soil. However, there was no significant difference between treatments in gross N immobilization rates. Results reported here highlight the importance of a labile fraction of the DOM pool to N and C cycling as its removal significantly (P<0.05) reduced PMN, MB-N, Gross Min and Gross Nit compared with whole soil in most or all treatments. In soil where DOM+LFOM were removed PMN was significantly (P<0.05) lower, but MB-C, Gross Min and Gross Nit was significantly (P<0.05) higher than in DOM removed soil. This suggests that LFOM plays an important role as a sink for mineral-N. Total soil phospholipid fatty acid (PLFA) concentration was significantly (P<0.05) higher in hay amended than control, fertilized and hay+fertilized soil. Principal components analysis was able to clearly discriminate between control, fertilized, hay+fertilized and hay amended soil. Soil amended with hay or fertilizer had a microbial community structure which differed from that of the control or hay+fertilized soils. Redundancy analysis with Monte Carlo permutation tests revealed that PLFA profiles were strongly correlated to differences in Gross Min, Gross Nit, MB-N, MB-C, MB-C/N ratio, total soil C and total soil C/N ratio. The results of this research suggest that changes in microbial structure are related to aspects of soil C and N pools and cycling.  相似文献   

20.
Afforestation and deforestation are key land-use changes across the world, and are considered to be dominant factors controlling ecosystem functioning and biodiversity. However, the responses of soil microbial communities to these land-use changes are not well understood. Because changes in soil microbial abundance and community structure have consequences for nutrient cycling, C-sequestration and long-term sustainability, we investigated impacts of land-use change, age of stand and soil physico-chemical properties on fungal and bacterial communities and their metabolic activities. This study was carried out at four sites in two geographical locations that were afforested on long-established pastures with Pinus radiata D. Don (pine). Two of the sites were on volcanic soils and two on non-volcanic soils and stand age ranged from 5 to 20 y. Microbial communities were analysed by biochemical (phospho-lipid fatty acids; PLFA) and molecular (multiplex-terminal restriction fragment length polymorphism; M-TRFLP) approaches. Both site and stand age influenced microbial properties, with changes being least detectable in the 5-y-old stand. Land use was a key factor influencing soil metabolic activities as measured by physiological profiling using MicroResp. Pasture soils had higher microbial biomass (P < 0.001), and metabolic activities (P < 0.001), and basal respiration rates were up to 2.8-times higher than in the pine soils. Microbial abundance analysis by PLFA showed that the fungal to bacterial ratio was higher in the pine soils (P < 0.01). Community analysis suggested that soil bacterial communities were more responsive to site (principal component 1; P < 0.001) than to land use (principal component 5; P < 0.001). In contrast, the fungal community was more affected by land-use change (principal component 1; P < 0.001) than by site, although site still had some influence on fungal community structure (principal component 2; P < 0.001). Redundancy analysis also suggested that bacterial and fungal communities responded differently to various soil abiotic properties, land-use change and location of sites. Overall, our results indicate that the change in land use from pasture to P. radiata stands had a direct impact on soil fungal communities but an indirect effect, through its effects on soil abiotic properties, on bacterial communities. Most of the changes in bacterial communities could be explained by altered soil physico-chemical properties associated with afforestation of pastures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号