首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
The removal of introns from eukaryotic messenger RNA precursors shares mechanistic characteristics with the self-splicing of certain introns, prompting speculation that the catalytic reactions of nuclear pre-messenger RNA splicing are fundamentally RNA-based. The participation of five small nuclear RNAs (snRNAs) in splicing is now well documented. Genetic analysis in yeast has revealed the requirement, in addition, for several dozen proteins. Some of these are tightly bound to snRNAs to form small nuclear ribonucleoproteins (snRNPs); such proteins may promote interactions between snRNAs or between an snRNA and the intron. Other, non-snRNP proteins appear to associate transiently with the spliceosome. Some of these factors, which include RNA-dependent adenosine triphosphatases, may promote the accurate recognition of introns.  相似文献   

2.
Splicing of messenger RNA precursors   总被引:144,自引:0,他引:144  
A general mechanism for the splicing of nuclear messenger RNA precursors in eukaryotic cells has been widely accepted. This mechanism, which generates lariat RNAs possessing a branch site, seems related to the RNA-catalyzed reactions of self-splicing introns. The splicing of nuclear messenger RNA precursors involves the formation of a multicomponent complex, the spliceosome. This splicing body contains at least three different small nuclear ribonucleoprotein particles (snRNPs), U2, U5, and U4 + U6. A complex containing precursor RNA and the U2 snRNP particle is a likely intermediate in the formation of the spliceosome.  相似文献   

3.
The spliceosome, a ribonucleoprotein complex that includes proteins and small nuclear RNAs (snRNAs), catalyzes RNA splicing through intron excision and exon ligation to produce mature messenger RNAs, which, in turn serve as templates for protein translation. We identified four point mutations in the U4atac snRNA component of the minor spliceosome in patients with brain and bone malformations and unexplained postnatal death [microcephalic osteodysplastic primordial dwarfism type 1 (MOPD 1) or Taybi-Linder syndrome (TALS); Mendelian Inheritance in Man ID no. 210710]. Expression of a subgroup of genes, possibly linked to the disease phenotype, and minor intron splicing were affected in cell lines derived from TALS patients. Our findings demonstrate a crucial role of the minor spliceosome component U4atac snRNA in early human development and postnatal survival.  相似文献   

4.
U6 is one of the five small nuclear RNA's (snRNA's) that are required for splicing of nuclear precursor messenger RNA (pre-mRNA). The size and sequence of U6 RNA are conserved among organisms as diverse as yeast and man, and so it has been proposed that U6 RNA functions as a catalytic element in splicing. A procedure for in vitro reconstitution of functional yeast U6 small nuclear ribonucleoproteins (snRNP's) with synthetic U6 RNA was applied in an attempt to elucidate the function of yeast U6 RNA. Two domains in U6 RNA were identified, each of which is required for in vitro splicing. Single nucleotide substitutions in these two domains block splicing either at the first or the second step. Invariably, U6 RNA mutants that block the first step of splicing do not enter the spliceosome. On the other hand, those that block the second step of splicing form a spliceosome but block cleavage at the 3' splice site of the intron. In both domains, the positions of base changes that block the second step of splicing correspond exactly to the site of insertion of pre-mRNA-type introns into the U6 gene of two yeast species, providing a possible explanation for the mechanism of how these introns originated and adding further evidence for the proposed catalytic role of U6 RNA.  相似文献   

5.
Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G>A, 51G>A, 55G>A, and 111G>A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.  相似文献   

6.
Major structural changes occur in the spliceosome during its activation just before catalyzing the splicing of pre-messenger RNAs (pre-mRNAs). Whereas changes in small nuclear RNA (snRNA) conformation are well documented, little is known about remodeling of small nuclear ribonucleoprotein (snRNP) structures during spliceosome activation. Here, human 45S activated spliceosomes and a previously unknown 35S U5 snRNP were isolated by immunoaffinity selection and were characterized by mass spectrometry. Comparison of their protein components with those of other snRNP and spliceosomal complexes revealed a major change in protein composition during spliceosome activation. Our data also suggest that the U5 snRNP is dramatically remodeled at this stage, with the Prp19 complex and other factors tightly associating, possibly in exchange for other U5 proteins, and suggest that after catalysis the remodeled U5 is eventually released from the postsplicing complex as a 35S snRNP particle.  相似文献   

7.
The splicing process, which removes intervening sequences from messenger RNA (mRNA) precursors is essential to gene expression in eukaryotic cells. This site-specific process requires precise sequence recognition at the boundaries of an intervening sequence, but the mechanism of this recognition is not understood. The splicing of mRNA precursors occurs in a multicomponent complex termed the spliceosome. Such an assembly of components is likely to play a key role in specifying those sequences to be spliced. In order to analyze spliceosome structure, a stringent approach was developed to obtain splicing complexes free of cellular contaminants. This approach is a form of affinity chromatography based on the high specificity of the biotin-streptavidin interaction. A minimum of three subunits: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles were identified in the 35S spliceosome structure, which also contains the bipartite RNA intermediate of splicing. A 25S presplicing complex contained only the U2 particle. The multiple subunit structure of the spliceosome has implications for the regulation of a splicing event and for its possible catalysis by ribozyme or ribozymes.  相似文献   

8.
The spliceosome is the complex macromolecular machine responsible for removing introns from precursors to messenger RNAs (pre-mRNAs). We combined yeast genetic engineering, chemical biology, and multiwavelength fluorescence microscopy to follow assembly of single spliceosomes in real time in whole-cell extracts. We find that individual spliceosomal subcomplexes associate with pre-mRNA sequentially via an ordered pathway to yield functional spliceosomes and that association of every subcomplex is reversible. Further, early subcomplex binding events do not fully commit a pre-mRNA to splicing; rather, commitment increases as assembly proceeds. These findings have important implications for the regulation of alternative splicing. This experimental strategy should prove widely useful for mechanistic analysis of other macromolecular machines in environments approaching the complexity of living cells.  相似文献   

9.
Xue S  Calvin K  Li H 《Science (New York, N.Y.)》2006,312(5775):906-910
The RNA splicing endonuclease cleaves two phosphodiester bonds within folded precursor RNAs during intron removal, producing the functional RNAs required for protein synthesis. Here we describe at a resolution of 2.85 angstroms the structure of a splicing endonuclease from Archaeglobus fulgidus bound with a bulge-helix-bulge RNA containing a noncleaved and a cleaved splice site. The endonuclease dimer cooperatively recognized a flipped-out bulge base and stabilizes sharply bent bulge backbones that are poised for an in-line RNA cleavage reaction. Cooperativity arises because an arginine pair from one catalytic domain sandwiches a nucleobase within the bulge cleaved by the other catalytic domain.  相似文献   

10.
Splicing of nuclear precursor messenger RNA (pre-mRNA) occurs on a large ribonucleoprotein complex, the spliceosome. Several small nuclear ribonucleoproteins (snRNP's) are subunits of this complex that assembles on the pre-mRNA. Although the U1 snRNP is known to recognize the 5' splice site, its roles in spliceosome formation and splice site alignment have been unclear. A new affinity purification method for the spliceosome is described which has provided insight into the very early stages of spliceosome formation in a yeast in vitro splicing system. Surprisingly, the U1 snRNP initially recognizes sequences at or near both splice junctions in the intron. This interaction must occur before the other snRNP's (U2, U4, U5, and U6) can join the complex. The results suggest that interaction of the two splice site regions occurs at an early stage of spliceosome formation and is probably mediated by U1 snRNP and perhaps other factors.  相似文献   

11.
Pre-mRNA剪接,即把内含子去除并把外显子序列连接成为成熟的mRNA,是基因表达与调控的重要环节之一。本文在概述真核基因mRNA剪接反应机制的基础上,主要讨论pre-mRNA的剪接机器,剪接体如何催化pre-mRNA剪接反应和pre-mRNA选择性剪接等方面的研究进展。  相似文献   

12.
Discrimination between splice sites and similar, nonsplice sequences is essential for correct intron removal and messenger RNA formation in eukaryotes. The 65- and 35-kD subunits of the splicing factor U2AF, U2AF65 and U2AF35, recognize, respectively, the pyrimidine-rich tract and the conserved terminal AG present at metazoan 3' splice sites. We report that DEK, a chromatin- and RNA-associated protein mutated or overexpressed in certain cancers, enforces 3' splice site discrimination by U2AF. DEK phosphorylated at serines 19 and 32 associates with U2AF35, facilitates the U2AF35-AG interaction and prevents binding of U2AF65 to pyrimidine tracts not followed by AG. DEK and its phosphorylation are required for intron removal, but not for splicing complex assembly, which indicates that proofreading of early 3' splice site recognition influences catalytic activation of the spliceosome.  相似文献   

13.
The in vitro splicing reactions of pre-messenger RNA (pre-mRNA) in a yeast extract were analyzed by glycerol gradient centrifugation. Labeled pre-mRNA appears in a 40S peak only if the pre-mRNA undergoes the first of the two partial splicing reactions. RNA analysis after extraction of glycerol gradient fractions shows that lariat-form intermediates, molecules that occur only in mRNA splicing, are found almost exclusively in this 40S complex. Another reaction intermediate, cut 5' exon RNA, can also be found concentrated in this complex. The complex is stable even in 400 mM KCl, although at this salt concentration, it sediments at 35S and is clearly distinguishable from 40S ribosomal subunits. This complex, termed a "spliceosome," is thought to contain components necessary for mRNA splicing; its existence can explain how separated exons on pre-mRNA are brought into contact.  相似文献   

14.
During spliceosome activation, a large structural rearrangement occurs that involves the release of two small nuclear RNAs, U1 and U4, and the addition of a protein complex associated with Prp19p. We show here that the Prp19p-associated complex is required for stable association of U5 and U6 with the spliceosome after U4 is dissociated. Ultraviolet crosslinking analysis revealed the existence of two modes of base pairing between U6 and the 5' splice site, as well as a switch of such base pairing from one to the other that required the Prp19p-associated complex during spliceosome activation. Moreover, a Prp19p-dependent structural change in U6 small nuclear ribonucleoprotein particles was detected that involves destabilization of Sm-like (Lsm) proteins to bring about interactions between the Lsm binding site of U6 and the intron sequence near the 5' splice site, indicating dynamic association of Lsm with U6 and a direct role of Lsm proteins in activation of the spliceosome.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1), in contrast with most other retroviruses, encodes trans-regulatory proteins for virus gene expression. It is shown in this study, by means of an in vitro splicing system, that nuclear extracts obtained from cells infected with HIV-1 contain a factor (or factors) that specifically inhibits splicing of a synthetic SP6/HIV pre-messenger RNA (pre-mRNA)-containing donor and acceptor splice sites in the coding region for the envelope protein. It is also shown that the SP6/HIV pre-mRNA is not capable of assembly in a ribonucleoprotein complex, spliceosome, in extracts from infected cells. These findings raise the possibility that specific inhibition of pre-mRNA splicing in the envelope protein coding region by HIV-1 trans-regulatory factors might be one control mechanism for efficient production of structural viral proteins and virion assembly.  相似文献   

16.
Heterogeneous nuclear ribonucleoproteins: role in RNA splicing   总被引:107,自引:0,他引:107  
Splicing in vitro of a messenger RNA (mRNA) precursor (pre-mRNA) is inhibited by a monoclonal antibody to the C proteins (anti-C) of the heterogeneous nuclear RNA (hnRNA)-ribonucleoprotein (hnRNP) particles. This antibody, 4F4, inhibits an early step of the reaction: cleavage at the 3' end of the upstream exon and the formation of the intron lariat. In contrast, boiled 4F4, or a different monoclonal antibody (designated 2B12) to the C proteins, or antibodies to other hnRNP proteins (120 and 68 kilodaltons) and nonimmune mouse antibodies have no inhibitory effect. The 4F4 antibody does not prevent the adenosine triphosphate-dependent formation of a 60S splicing complex (spliceosome). Furthermore, the 60S splicing complex contains C proteins, and it can be immunoprecipitated with 4F4. Depletion of C proteins from the splicing extract by immunoadsorption with either of the two monoclonal antibodies to the C proteins (4F4 or 2B12) results in the loss of splicing activity, whereas mock-depletion with nonimmune mouse antibodies bodies has no effect. A 60S splicing complex does not form in a C protein-depleted nuclear extract. These results indicate an essential role for proteins of the hnRNP complex in the splicing of mRNA precursors.  相似文献   

17.
18.
19.
A specific amino acid binding site composed of RNA   总被引:20,自引:0,他引:20  
M Yarus 《Science (New York, N.Y.)》1988,240(4860):1751-1758
A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.  相似文献   

20.
The design and catalytic properties of a simplified ribonuclease P RNA   总被引:21,自引:0,他引:21  
Ribonuclease P (RNase P) RNA is the catalytic moiety of the ribonucleoprotein enzyme that removes precursor sequences from the 5' ends of pre-transfer RNAs in eubacteria. Phylogenetic variation according to recently proposed secondary structure models was used to identify structural elements of the RNase P RNA that are dispensable for catalysis. A simplified RNase P RNA that consists only of evolutionarily conserved features was designed, synthesized, and characterized. Although the simplified RNA (Min 1 RNA) is only 263 nucleotides in length, in contrast to the 354 to 417 nucleotides of naturally occurring RNase P RNAs, its specificity of pre-tRNA cleavage is identical to that of the native enzymes. Moreover, the catalytic efficiencies of the Min 1 RNA and the native RNA enzymes are similar. These results focus the search for the catalytic elements of RNase P RNAs to their conserved structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号