首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
Beneficial root-associated rhizospheric microbes play a key role in maintaining host plant growth and can potentially allow drought-resilient crop production. The complex interaction of root-associated microbes mainly depends on soil type, plant genotype, and soil moisture. However, drought is the most devastating environmental stress that strongly reduces soil biota and can restrict plant growth and yield. In this review, we discussed our mechanistic understanding of drought and microbial response traits. Additionally, we highlighted the role of beneficial microbes and plant-derived metabolites in alleviating drought stress and improving crop growth. We proposed that future research might focus on evaluating the dynamics of root-beneficial microbes under field drought conditions. The integrative use of ecology, microbial, and molecular approaches may serve as a promising strategy to produce more drought-resilient and sustainable crops.  相似文献   

2.
As one of the most important and essential macronutrients next to nitrogen,phosphorus(P)is important for plant development,but it is the least mobile nutrient element in plant and soil.Globally,P is mined from geological sediments and added to agricultural soils so as to meet the critical requirements of crop plants for agronomic productivity.Phosphorus exists in soil in both organic and inorganic forms.The various inorganic forms of the element in soil are salts with calcium,iron,and aluminum,whereas the organic forms come from decaying vegetation and microbial residue.There is a huge diversity of plant microbiomes(epiphytic,endophytic,and rhizospheric)and soil microbiomes that have the capability to solubilize the insoluble P and make it available to plant.The main mechanism for the solubilization of inorganic P is by the production of organic acids,which lowers soil pH,or by the production of acid and alkaline phosphatases,which causes the mineralization of organic P.The P-solubilizing and-mobilizing microorganisms belong to all three domains,comprising archaea,bacteria,and eukarya.The strains belonging to the genera Arthrobacter,Bacillus,Burkholderia,Natrinema,Pseudomonas,Rhizobium,and Serratia have been reported as efficient and potential P solubilizers.The use of P solubilizers,alone or in combination with other plant growth-promoting microbes as an eco-friendly microbial consortium,could increase the P uptake of crops,increasing their yields for agricultural and environmental sustainability.  相似文献   

3.
Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2.Thus,climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops.In this study,plant physiology,soil carbon,and soil enzyme activities were measured to investigate the impacts of elevated CO2 and drought stress on a Stagnic Anthrosol planted with soybean (Glycine max).Treatments of two CO2 levels,three soil moisture levels,and two soil cover types were established.The results indicated that elevated CO2 and drought stress significantly affected plant physiology.The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions.Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil,probably by improving the soil water effectiveness for organic decomposition and mineralization.Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC),but the interactive effects of drought stress and CO2 on them were not significant.Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation.These results suggested that drought stress had significant negative impacts on plant physiology,soil carbon,and soil enzyme activities,whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts.  相似文献   

4.
Microbial adaptation to salinity can be achieved through synthesis of organic osmolytes,which requires high amounts of energy;however,a single addition of plant residues can only temporarily improve energy supply to soil microbes.Therefore,a laboratory incubation experiment was conducted to evaluate the responses of soil microbes to increasing salinity with repeated additions of plant residues using a loamy sand soil with an electrical conductivity in saturated paste extract(ECe) of 0.6 dS m-1.The soil was kept non-saline or salinized by adding different amounts of NaCl to achieve ECe of 12.5,25.0 and 50.0 dS m-1.The non-saline soil and the saline soils were amended with finely ground pea residues at two rates equivalent to 3.9 and 7.8 g C kg-1 soil on days 0,15 and29.The soils receiving no residues were included as a control.Cumulative respiration per g C added over 2 weeks after each residue addition was always greater at 3.9 than 7.8 g C kg-1 soil and higher in the non-saline soil than in the saline soils.In the saline soils,the cumulative respiration per g C added was higher after the second and third additions than after the first addition except with3.9 g C kg-1 at ECe of 50 dS m1.Though with the same amount of C added(7.8 g C kg-1),salinity reduced soil respiration to a lesser extent when 3.9 g C kg-1 was added twice compared to a single addition of 7.8 g C kg-1.After the third residue addition,the microbial biomass C concentration was significantly lower in the soils with ECe of 25 and 50 dS m1 than in the non-saline soil at3.9 g C kg-1,but only in the soil with ECe of 50 dS m-1 at 7.8 g C kg-1.We concluded that repeated residue additions increased the adaptation of soil microbial community to salinity,which was likely due to high C availability providing microbes with the energy needed for synthesis of organic osmolytes.  相似文献   

5.
Earthworms,one of the most important macroinvertebrates in terrestrial ecosystems of temperate zones,exert important influences on soil functions.A laboratory microcosm study was conducted to evaluate the influence of the earthworm Eisenia fetida on wheat straw decomposition and nutrient cycling in an agricultural soil in a reclaimed salinity area of the North China Plain.Each microcosm was simulated by thoroughly mixing wheat straw into the soil and incubated for 120 d with earthworms added at 3 different densities as treatments:control with no earthworms,regular density(RD)with two earthworms,and increased density(ID)with six earthworms.The results showed that there was no depletion of carbon and nitrogen pools in the presence of the earthworms.Basal soil respiration rates and metabolic quotient increased with the increase in earthworm density during the initial and middle part of the incubation period.In contrast,concentrations of microbial biomass carbon and microbial biomass quotient decreased in the presence of earthworms.Earthworm activity stimulated the transfer of microbial biomass carbon to dissolved organic carbon and could lead to a smaller,but more metabolically active microbial biomass.Concentrations of inorganic nitrogen and NO3--N increased significantly with the increase in earthworm density at the end of the incubation(P<0.05),resulting in a large pool of inorganic nitrogen available for plant uptake.Cumulative net nitrogen mineralization rates were three times higher in the ID treatment than the RD treatment.  相似文献   

6.
小麦生长期间施肥后土壤微生物生物量C和P的变化   总被引:1,自引:0,他引:1  
A pot experiment was carried out with a clay loam in a green house.The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradually decreased with declining of the temperature .The soil biomass C increased at the tillering stage when the temperature gradually increased,and rose to the highest value at the anthesis stage,being about 554.9-794.4mg C kg^-1,The applicatio of organic manure resulted in the highest increase in biomass C among the fertiliztion treatments while that of ammonium sulphate gave the lowest At the harvest time the soil biomass C decreased to the presowing level. Like the soil biomass C the amount of biomass P was increased by the incorporation of organic manure and was the highest among the treatments,with the values of the check and ammonium sulphate treatments being the lowest ,Meanwhile,the changing patterns of the C/P ratio of soil microbial biomass at stages of wheat growth are also described.  相似文献   

7.
Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.  相似文献   

8.
Bio-organic fertilizers enriched with plant growth-promoting microbes(PGPMs)have been widely used in crop fields to promote plant growth and maintain soil microbiome functions.However,their potential effects on N2O emissions are of increasing concern.In this study,an in situ measurement experiment was conducted to investigate the effect of organic fertilizer containing Trichoderma guizhouense(a plant growth-promoting fungus)on soil N2O emissions from a greenhouse vegetable field.The following four treatments were used:no fertilizer(control),chemical fertilizer(NPK),organic fertilizer derived from cattle manure(O),and organic fertilizer containing T.guizhouense(O+T,referring to bio-organic fertilizer).The abundances of soil N cycling-related functional genes(amoA)from ammonium-oxidizing bacteria(AOB)and archaea(AOA),as well as nirS,nirK,and nosZ,were simultaneously determined using quantitative PCR(qPCR).Compared to the NPK plot,seasonal total N2O emissions decreased by 11.7%and 18.7%in the O and O+T plots,respectively,which was attributed to lower NH4+-N content and AOB amoA abundance in the O and O+T plots.The nosZ abundance was significantly greater in the O+T plot,whilst the AOB amoA abundance was significantly lower in the O+T plot than in the O plot.Relative to the organic fertilizer,bio-organic fertilizer application tended to decrease N2O emissions by 7.9%and enhanced vegetable yield,resulting in a significant decrease in yield-scaled N2O emissions.Overall,the results of this study suggested that,compared to organic and chemical fertilizers,bio-organic fertilizers containing PGPMs could benefit crop yield and mitigate N2O emissions in vegetable fields.  相似文献   

9.
Indigenous grasses have been effectively used to rehabilitate degraded African drylands. Despite their success, studies examining their effects on soil bioindicators such as microbial biomass carbon(C) and enzyme activities are scarce. This study elucidates the effects of drought stress and phenological stages of a typical indigenous African grass, Enteropogon macrostachyus, on microbial biomass and enzyme activities(β-glucosidase, cellobiohydrolase, and chitinase) in the rhizosphere soil. Enteropogon macrostachyus was grown under controlled conditions. Drought stress(partial watering) was simulated during the last 10 d of plant growth, and data were compared with those from optimum moisture conditions. The rhizosphere soil was sampled after 40 d(seedling stage), 70 d(elongation stage), and 80 d(simulated drought stress). A high root:shoot ratio at seedling stage compared with elongation and reproduction stages demonstrated that E. macrostachyus invested more on root biomass in early development, to maximise the uptake of nutrients and water. Microbial biomass and enzyme activities increased with root biomass during plant growth. Ten-day drought at reproduction stage increased the microbial biomass and enzyme activities, accompanying a decrease in binding affinity and catalytic efficiency. In conclusion, drought stress controls soil organic matter decomposition and nutrient mobilization, as well as the competition between plant and microorganisms for nutrient uptake.  相似文献   

10.
黄河三角洲退化湿地微生物群落特性研究   总被引:4,自引:0,他引:4  
Five different sites with a soluble salt gradient of 3.0--17.7 g kg-1 dry soil from the coast to the inland were selected, and the microbial population size, activity and diversity in the rhizospheres of five common plant species and the adjacent bulk soils (non-rhizosphere) were compared in a degraded wetland of the Yellow River Delta, Shandong Province, China to study the effects of soil environment (salinity, seasonality, depth, and rhizosphere) on microbial communities and the wetland’s ecological function, thus providing basic data for the bioremediation of degraded wetlands. There was a significant negative linear relationship between the salinity and the total number of microorganisms, overall microbial activity, or culturable microbial diversity. Salinity adversely affected the microbial community, and higher salinity levels resulted in smaller and less active microbial communities. Seasonal changes were observed in microbial activity but did not occur in the size and diversity. The microbial size, activity and diversity decreased with increasing soil depth. The size, activity and diversity of culturable microorganisms increased in the rhizospheres. All rhizospheres had positive effects on the microbial communities, and common seepweed had the highest rhizosphere effect. Three halophilic bacteria (Pseudomonas mendocina, Burkholderia glumae, and Acinetobacter johnsonii) were separated through BIOLOG identification, and common seepweed could be recommended for bioremediation of degraded wetlands in the Yellow River Delta.  相似文献   

11.
有机农业施肥方式对土壤微生物活性的影响研究   总被引:22,自引:0,他引:22  
综述了国内外有机农业施肥方式对培肥土壤及土壤主要微生物活性的影响,有机农业施肥方式显著增加土壤微生物数量,调控微生物种群结构,提高土壤有益微生物种群数量,土壤微生物量C、N含量倍数增加。阐明施用有机肥料对维持土壤微生物多样性与生态稳定性的必要性,并展望了施用有机肥与土壤微生物活性的关系。  相似文献   

12.
蔡祖聪  黄新琦  赵军 《土壤学报》2023,60(5):1213-1220
植物-土壤反馈效应及农田生产特点决定了农田土壤生产力的不可持续性,因而必须采用适当的措施方可保持地力常新。施用化肥解决了农田土壤的养分贫化问题,极大地提高了作物产量,但激发了土传病原生物的活性,作物土传病频发成为制约集约化农业可持续发展的瓶颈问题。现有的研究成果表明,地上生物多样性与土壤微生物多样性紧密联系,植物提供的有机物质是连接二者的物质基础。单一作物种植的集约化农业提供给土壤微生物可利用的有机物质来源单一,导致土壤微生物多样性下降,削弱对土传病原生物致病性的抑制作用。本文提出,在作物生长过程中添加土壤有益微生物偏好利用的有机物质,激活土壤有益微生物,可能是维持集约化农业土壤生物健康,抑制作物土传病的有效途径。为此,有必要开展各种土壤微生物偏好利用的有机物质以及作物生长过程中如何施用有机物质的方法。  相似文献   

13.
Soil salinity diminishes soil health and reduces crop yield, which is becoming a major global concern. Salinity stress is one of the primary stresses, leading to several other secondary stresses that restrict plant growth and soil fertility. The major secondary stresses induced in plants under saline-alkaline conditions include osmotic stress, nutrient limitation, and ionic stress, all of which negatively impact overall plant growth. Under stressed conditions, certain beneficial soil microflora ...  相似文献   

14.
不同培肥模式对茶园土壤微生物活性和群落结构的影响   总被引:6,自引:0,他引:6  
以闽东地区红黄壤茶园定位实验地为对象,通过测定6种不同施肥处理土壤微生物学特性,研究不同培肥对土壤微生物特性和生物化学过程的影响,阐明各指标间的相互关系.结果表明,除了单施无机肥处理外,半量化肥+半量有机肥、全量有机肥、全量化肥+豆科绿肥以及半量化肥+半量有机肥+豆科绿肥等的培肥方式均不同程度提高了土壤有机质,可培养微生物数量,微生物量碳、氮含量及土壤酶活性,尤以半量无机肥+半量有机肥+豆科牧草的培肥模式增幅更为明显,而单施无机肥不利于微生物的生长、酶活性的提高和维持生态系统的稳定性.微生物群落磷脂脂肪酸(PLFAs)标记主成分分析显示,各种不同施肥方式使微生物群落结构发生改变.相关分析表明,微生物量与可培养微生物数量、微生物磷脂脂肪酸含量之间的相关性明显高于微生物量与各种酶活性之间的相关性,说明微生物数量大小对微生物群落结构的影响大于对酶活性功能的影响.研究也表明土壤各微生物指标能从不同方面反映土壤肥力水平,所以采用各种不同的方法能更客观地评价闽东地区茶园红黄壤质量的优劣.  相似文献   

15.
根际促生菌Bacillus subtilisY-IVI在香草兰上的应用效果研究   总被引:3,自引:1,他引:3  
【目的】香草兰为多年生热带经济作物,随着种植年限的增加,植株长势弱,土壤有益微生物减少,土壤微生物区系失衡,严重制约了香草兰产业的可持续发展。枯草芽孢杆菌作为一种根际促生菌,被广泛应用于促进作物生长,改善土壤微生物环境。本文将枯草芽孢杆菌Y-IVI接种在有机肥上,生产了生物有机肥,并就该生物有机肥对香草兰生长的影响进行了研究。【方法】采用温室盆栽试验,调查施用根际促生菌枯草芽孢杆菌(Bacillus subtilis)Y-IVI及其经固体发酵制得的微生物有机肥料(Y-IVI:3×108cfu/g)后,香草兰植株地上部及根系的生长状况,采用选择性培养基方法研究了Y-IVI在香草兰根际土壤中的定殖能力及对香草兰根茎腐病致病菌-尖孢镰刀菌数量的影响。【结果】施用Y-IVI及BIO 4个月后,香草兰根际土壤Y-IVI数量仍可达到106cfu/g土,二者无显著差异,在处理OF和对照中未检测到菌株Y-IVI。施用生物有机肥香草兰地上部干重和根系干重均显著高于对照,分别增加了63.1%和59.4%,与不接种Y-IVI的有机肥处理(OF)相比,地上部干重显著提高了43.2%,根系干重提高了18%,差异不显著;施用Y-IVI菌液的处理植株地上部干重和根系干重均高于对照,但无显著性差异;处理BIO根系直径、根系表面积和总体积与对照相比分别增加了41.9%、88.9%和80.4%,均显著高于对照,总根长与对照差异不显著;处理BIO根系表面积和总体积与有机肥处理OF相比分别显著增加了41.9%和30.8%,根系直径与OF相比增加了10.1%,差异不显著;处理Y-IVI根系直径与对照相比显著增加了25.5%,但根系表面积和总体积与对照差异不显著;与对照相比,施用BIO及Y-IVI的处理根际土壤尖孢镰刀菌数量分别明显降低了52.2%和41.8%,施用有机肥OF的处理降低了10%,差异不显著。【结论】Y-IVI可稳定定殖于香草兰根际土壤对其生长起有益作用,含促生菌Y-IVI的生物有机肥料比单独使用促生菌菌液可以更有效地减少根际土壤中尖孢镰刀菌数量,降低连作生物障碍。施用生物有机肥料比施用化肥和有机肥更有效地促进香草兰地上部及根系生长,因此,施用由根际促生菌枯草芽孢杆菌(Bacillus subtilis)Y-IVI制得的生物有机肥是解决香草兰连作生物障碍和提高收益的有效手段。  相似文献   

16.
张英  武淑霞  雷秋良  翟丽梅  王洪媛  李浩  杨波  刘宏斌 《土壤》2022,54(6):1175-1184
畜禽粪便作为有机肥还田可以维持和提高土壤有机质、改良土壤,有利于农业可持续发展。不同类型粪肥还田后对土壤生物学性状的影响不同,为探究这一问题,在内蒙古乌兰察布市设置田间试验,包括化肥(F)、羊粪(GM)、猪粪(PM)、牛粪(CM)4个处理,研究其对土壤养分、酶活性及微生物群落的影响。结果表明,施用粪肥较化肥具有增加土壤有机质、全氮、有效磷、铵态氮等养分含量的趋势。不同粪肥较化肥处理的土壤脲酶、蔗糖酶、碱性磷酸酶和过氧化氢酶活性最高增幅分别为32.4%、150.4%、26.8%和30.1%。牛粪处理的土壤微生物生物量碳氮显著提高,分别较化肥增加33.2%和33.4%。不同处理在细菌门水平上的优势种群较一致,放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)是优势种群。本试验条件下,牛粪处理更能提高土壤微生物生物量碳氮,短期内施用不同粪肥对于提高土壤微生物群落多样性差异不显著,土壤pH、有效磷、铵态氮是影响土壤微生物群落结构的主要环境因子。  相似文献   

17.
当代土壤微生物学的活跃研究领域   总被引:33,自引:0,他引:33       下载免费PDF全文
李阜棣 《土壤学报》1993,30(3):229-236
  相似文献   

18.
  目的  研究干旱胁迫条件下施用有机肥和与之等氮磷钾养分量化肥对玉米生物量的影响及其机制,为玉米抗旱技术措施的提出提供理论依据。  方法  通过温室盆栽模拟试验研究施肥(不施肥、施用牛粪和施用化肥)、微生物(不灭菌和灭菌)和水分(不干旱即田间持水量的70%和干旱即田间持水量的40%)三因素对苗期(45天后)玉米生长及土壤性质的影响。  结果  (1)与不施肥相比,施肥处理显著提高玉米生物量,其中地上部生物量提高了155% ~ 278%,根系提高了71% ~ 122%,总生物量提高了125% ~ 221%;在灭菌条件下,干旱后玉米生物量显著降低(30% ~ 34%)。(2)施肥后,未显著改变土壤无机氮的含量,显著提高了土壤速效磷和速效钾的含量;与正常水分处理相比,干旱仅在有机肥处理下显著降低了土壤速效钾含量,达43.8%;施肥对土壤微生物总生物量和细菌生物量均无显著影响,显著提高了真菌生物量以及真菌和细菌的比值;干旱后,土壤微生物总生物量、细菌和真菌生物量均未发生显著改变。(3)随土壤速效磷含量的增加,玉米总生物量显著增加。  结论  干旱显著降低了苗期玉米生物量,且这种干旱效应仅在灭菌土壤上出现,说明了土壤微生物能够增强植物对干旱胁迫的抗性;在干旱情况下,有机肥施用后玉米生物量显著高于化肥处理,土壤速效磷是主要的驱动因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号