首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
Summary A biotype of Conyza albida resistant to imazapyr was discovered on a farm in the province of Seville, Spain, on land that had been continuously treated with this herbicide. This is the first reported occurrence of target site resistance to acetolactate synthase (ALS)-inhibiting herbicides in C. albida . In order to characterize this resistant biotype, dose–response experiments, absorption and translocation assays, metabolism studies, ALS activity assays and control with alternative herbicides were performed. Dose–response experiments revealed a marked difference between resistant (R) and susceptible (S) biotypes with a resistance factor [ED50(R)/ED50(S)] of 300. Cross-resistance existed with amidosulfuron, imazethapyr and nicosulfuron. Control of both biotypes using alternative herbicides was good using chlorsulfuron, triasulfuron, diuron, simazine, glyphosate and glufosinate. The rest of the herbicides tested did not provide good control for either biotype. There were no differences in absorption and translocation between the two biotypes, the maximum absorption reached about 15%, and most of the radioactivity taken up remained in the treated leaf. The metabolism pattern was similar and revealed that both biotypes may form polar metabolites with similar retention time (Rf). The effect of several ALS inhibitors on ALS (target site) activity measured in leaf extracts from both biotypes was investigated. Only with imazapyr and imazethapyr did the R biotype show a higher level of resistance than the S biotype [I50 (R)/I50(S) value of 4.0 and 3.7 respectively]. These data suggest that the resistance to imazapyr found in the R biotype of C. albida results primarily from an altered target site.  相似文献   

3.
Repeated use of ACCase‐ and ALS‐inhibiting herbicides in northern Greece has resulted in the evolution of a population of Lolium rigidum resistant to diclofop and chlorsulfuron. The biotype from Athos was highly resistant to diclofop and also exhibited differential cross‐resistance to clodinafop, fluazifop, tralkoxydim and sethoxydim. Assay of ACCase activity confirmed that the resistant biotype was tenfold more resistant to diclofop than the susceptible biotype, suggesting that the resistance mechanism could involve an altered target site. The diclofop‐resistant biotype has also exhibited multiple resistance to chlorsulfuron and the mechanism for this is unknown. Seed‐bioassay was found to be a rapid, cheap and reliable method to identify populations of L rigidum resistant to ACCase inhibitors and chlorsulfuron. Moreover, root elongation in the seed bioassay was more sensitive to ACCase inhibitors and chlorsulfuron than shoot elongation. © 2000 Society of Chemical Industry  相似文献   

4.
BACKGROUND: The acetolactate synthase (ALS)-inhibiting herbicide sulfosulfuron is registered in Australia for the selective control of Hordeum leporinum Link. in wheat crops. This herbicide failed to control H. leporinum on two farms in Western Australia on its first use. This study aimed to determine the level of resistance of three H. leporinum biotypes, identify the biochemical and molecular basis and develop molecular markers for diagnostic analysis of the resistance. RESULTS: Dose-response studies revealed very high level (>340-fold) resistance to the sulfonylurea herbicides sulfosulfuron and sulfometuron. In vitro ALS assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to herbicide inhibition. This altered ALS sensitivity in the resistant biotypes was found to be due to a mutation in the ALS gene resulting in amino acid proline to serine substitution at position 197. In addition, two- to threefold higher ALS activities were consistently found in the resistant biotypes, compared with the known susceptible biotype. Two cleaved amplified polymorphic sequence (CAPS) markers were developed for diagnostic testing of the resistant populations. CONCLUSION: This study established the first documented case of evolved ALS inhibitor resistance in H. leporinum and revealed that the molecular basis of resistance is due to a Pro to Ser mutation in the ALS gene.  相似文献   

5.
6.
7.
8.
9.
Herbicide resistance in Lolium rigidum is widespread across much of the agricultural land in Australia. As the incidence of herbicide resistance has increased, so has the incidence of multiple herbicide resistance. This reduces the herbicide options available for control of this weed. This study reports on the successful amplification and sequencing of the acetolactate synthase (ALS) gene of L. rigidum using primers designed from sequence information of related taxa. This enables, for the first time, the successful determination of a mutation in the ALS gene of this species that provides resistance to ALS‐inhibiting herbicides. This mutation causes amino acid substitution at Trp574 (numbering standardised to Arabidopsis thaliana) to Leu which had been reported to confer a high level of resistance against all classes of ALS inhibitor herbicides. In addition, multiple resistance to ALS‐inhibiting and acetyl‐coenzyme A carboxylase‐inhibiting herbicides is acquired through the independent accumulation of mutant alleles for the target sites. This may thus explain some of the irregular, mosaic resistance patterns that occur in this predominantly outcrossing species.  相似文献   

10.
Despite frequent use for the past 25 years, resistance to glyphosate has evolved in few weed biotypes. The propensity for evolution of resistance is not the same for all herbicides, and glyphosate has a relatively low resistance risk. The reasons for these differences are not entirely understood. A previously published two‐herbicide resistance model has been modified to explore biological and management factors that account for observed rates of evolution of glyphosate resistance. Resistance to a post‐emergence herbicide was predicted to evolve more rapidly than it did to glyphosate, even when both were applied every year and had the same control efficacy. Glyphosate is applied earlier in the growing season when fewer weeds have emerged and hence exerts less selection pressure on populations. The evolution of glyphosate resistance was predicted to arise more rapidly when glyphosate applications were later in the growing season. In simulations that assumed resistance to the post‐emergence herbicide did not evolve, the evolution of glyphosate resistance was less rapid, because post‐emergence herbicides were effectively controlling rare glyphosate‐resistant individuals. On their own, these management‐related factors could not entirely account for rates of evolution of resistance to glyphosate observed in the field. In subsequent analyses, population genetic parameter values (initial allele frequency, dominance and fitness) were selected on the basis of empirical data from a glyphosate‐resistant Lolium rigidum population. Predicted rates of evolution of resistance were similar to those observed in the field. Together, the timing of glyphosate applications, the rarity of glyphosate‐resistant mutants, the incomplete dominance of glyphosate‐resistant alleles and pleiotropic fitness costs associated with glyphosate resistance, all contribute to its relatively slow evolution in the field.  相似文献   

11.
Weed populations with resistance to glyphosate have evolved over the last 7 years, since the discovery of the first glyphosate‐resistant populations of Lolium rigidum in Australia. Four populations of L. rigidum from cropping, horticultural and viticultural areas in New South Wales and South Australia were tested for resistance to glyphosate by dose–response experiments. All populations required considerably more glyphosate to achieve 50% control compared with a known susceptible population, indicating they were resistant to glyphosate. Translocation of glyphosate within these resistant populations was examined by following the movement of radiolabelled glyphosate applied to a mature leaf. All resistant plants translocated significantly more herbicide to the tip of the treated leaf than did susceptible plants. Susceptible plants translocated twice as much herbicide to the stem meristematic portion of the plant compared with resistant plants. These different translocation patterns suggest an association between glyphosate resistance in L. rigidum and the ability of glyphosate to accumulate in the shoot meristem.  相似文献   

12.
13.
14.
A simple method based upon allele-specific PCR was developed to detect an isoleucine-leucine substitution in the gene encoding chloroplastic acetyl-coenzyme A carboxylase (ACCase) in two gramineous weeds: Lolium rigidum Gaud and Alopecurus myosuroides Huds. Analysis of 1800 A myosuroides and 750 L rigidum seedlings showed that the presence of ACCase leucine allele(s) conferred cross-resistance to the cyclohexanedione herbicide cycloxydim and to the aryloxyphenoxypropionate herbicides fenoxaprop-P-ethyl and diclofop-methyl. Seedlings containing ACCase leucine allele(s) could be either sensitive or resistant to the aryloxyphenoxypropionate herbicides haloxyfop-P-methyl and clodinafop-propargyl. Successful detection of resistant plants in a field population of A myosuroides was achieved using this PCR assay. Using it with basic molecular biology laboratory equipment, the presence of resistant leucine ACCase allele(s) can be detected within one working day.  相似文献   

15.
杂草对乙酰乳酸合成酶抑制剂抗药性研究进展   总被引:3,自引:0,他引:3  
乙酰乳酸合成酶(ALS)抑制剂类除草剂已经成为一类广泛使用的除草剂。综述了杂草对ALS抑制剂类除草剂抗药性的产生与发展、抗性机理、抗性基因应用等方面的研究进展。其抗性产生机理主要有杂草对除草剂代谢能力增强、ALS基因突变导致对除草剂敏感性降低和ALS含量提高等。  相似文献   

16.
17.
18.
19.
为明确河南省部分地区的多花黑麦草Lolium multiflorum种群对乙酰辅酶A羧化酶(acetylCoA carboxylase,ACCase)和乙酰乳酸合成酶(acetolactate synthase,ALS)抑制剂类除草剂的抗性水平和抗性机理,采用整株生物测定法测定采自新乡市和驻马店市的多花黑麦草种群对ACCase抑制剂类除草剂精噁唑禾草灵、炔草酯、唑啉草酯和ALS抑制剂类除草剂甲基二磺隆、氟唑磺隆、啶磺草胺的抗性水平,并对多花黑麦草ACCase和ALS靶标酶编码基因进行克隆及氨基酸序列比对,分析其靶标抗性机理。结果显示,与多花黑麦草敏感种群HNXX01相比,HNZMD04和HNXX05种群对6种除草剂均产生了抗性,HNZMD04种群对精噁唑禾草灵和啶磺草胺的相对抗性倍数分别为44.65和40.31,对炔草酯和氟唑磺隆的相对抗性倍数分别为11.91和11.93;HNXX05种群对精噁唑禾草灵和氟唑磺隆的相对抗性倍数分别为27.70和25.67。HNZMD04和HNXX05抗性种群的ACCase基因均发生了D2078G突变,2个种群的突变率分别为55%和70%;HNZMD04...  相似文献   

20.
Primisulfuron‐resistant (AR and MR) and ‐susceptible (AS and MS) Bromus tectorum biotypes were collected from a Poa pratensis field at Athena, Oregon, and in research plots at Madras, Oregon. Studies were conducted to characterize the resistance of the B. tectorum biotypes. Whole plant bioassay and acetolactate synthase (ALS) enzyme assay revealed that the AR biotype was highly resistant to the sulfonylurea (SU) herbicides, primisulfuron and sulfosulfuron and to a sulfonylaminocarbonyltriazolinone (SCT) herbicide, propoxycarbazone‐sodium. However, the AR biotype was not resistant to imazamox, an imidazolinone (IMI) herbicide. Results of the whole plant bioassay studies showed that the MR biotype was moderately resistant to all ALS inhibitors tested. However, there were no differences in ALS sensitivities between the MR and MS biotypes. The nucleotide and amino acid sequence analysis of the als gene demonstrated a single‐point mutation from C to T, conferring the exchange of the amino acid proline to serine at position 197 in the AR biotype. However, this mutation was not found in the MR biotype. Results of this research indicate that: the resistance of the AR biotype to SU and SCT herbicides is based on an altered target site due to a single‐point mutation; resistance in the MR biotype is not due to a target site mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号