首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Analysis of variance has been carried out between soil samples separated by distances of 0.5 m, 10 m and 0.5–8 km. The samples were taken from the A2 horizon of the Countesswells series iron podzol, thus maintaining the same pedological feature, profile class and parent material. The organic matter has been examined by the pyrolysis characteristics, total carbon and nitrogen, and the cations by exchangeable Ca2+, Mg2+, Na+, K+ and H+, whilst pH and total phosphorus have also been determined. The analysis of variance with respect to distance between the samples shows that all the properties examined exhibit considerable variation over short distances, many showing the major proportion of their total variance at a distance of 0.5 m. This markedly limits the interpretation of data from single samples. Those properties reflecting base status and humus type show, in addition, a variation of similar size over distances of the order of a kilometre.  相似文献   

2.
Complexation with organic matter controls the activity of dissolved Al3+ in many soils. The buffering intensity of these soils is largely dependent on the H+/Al3+ exchange ratio, i.e. the number of protons consumed by the solid phase when one Al3+ is released. Here, the H+/Al3+ exchange ratio was determined from batch titrations using solutions of fulvic acid (FA) as a model for soil organic matter. Aluminium was added, from 1.04 to 6.29 mmol Al per g FA, which is within the range of humus‐bound Al found in the upper B horizon of podzolized soils. Furthermore, pH was varied with NaOH to give values between 3.5 and 5.0. The H+/Al3+ exchange ratio ranged between 1.49 and 2.23 with a mean of 1.94. It correlated positively with pH and the total concentration of Al present. Theoretically, this can be explained with a partial hydrolysis of bound Al. The slope of logAl (log10 of Al3+ activity) against pH generally underestimated the actual exchange ratio, which can partly be attributed to the systems being diluted (100 mg FA l?1). However, where 4 mmol Al or more had been added per g FA, the logAl slope gradually approached ?3 between pH 4.5 and 5.0. This might be the result of a shift from Al3+ activity control by humus complexation to control by Al(OH)3(s).  相似文献   

3.
We determined proton budgets of surface soils in a deciduous forest (Df) and a coniferous forest (Cf) of Volcanogenous Regosols in Tomakomai, Hokkaido of northern Japan. The total H+ source was 12.9 and 11.6 kmolc ha?1 y?1 at Df and Cf respectively, and the external H+ was 1% at Df and 2% at Cf. The primary H+ sources were vegetation uptake of base cations and nitrification, while the major H+ sinks were release of base cations and NO3 + uptake by vegetation. Leaching incubation experiments using A horizon soils including Df and Cf with NH4 + solutions (5.3, 15.9 mg N L?1) showed that H+ from nitrification was generally higher in the Df soil than Cf soil, and nitrification of Tomakomai Df soil was the highest in both treatments. Results of multiple regression analyses suggested that pHkCl and exchangeable Ca2+ contributed to the H+ generation via nitrification. Leaching experiments with dilute HCl (pH 3.3) revealed that cation release (mainly Ca2+) occurred, and the proportion of release by decrease of exchangeable cations was higher than that by mineral weathering. Mineral weathering in the Tomakomai soil was higher than the other soils.  相似文献   

4.
Between 1985 and 1990, bulk precipitation and soil solution from the organic (Oh) and mineral (Bs) horizons of a well developed podzol were regularly sampled at a moorland catchment in Mid-Wales. Samples were analysed for pH, major cations, major anions, and dissolved organic carbon (DOC). Acid neutralizing capacity (ANC) was estimated by the charge balance method. Average monthly ANC of soil solutions from the Oh horizon varied seasonally, with a maximum in July and a minimum in February. In contrast, H+ concentrations varied little. Solute deposition, dominated by sodium and chloride, also varied seasonally with a winter maximum, which is reflected in the soil solution chemical composition. In the Oh horizon during winter, the increase in base cation (Na) concentrations led to release of H+ through ion exchange. ANC declined in the absence of any buffering mechanism. In summer, the depletion of exchangeable acidity that occurred in winter, was replenished by H+ produced by the dissociation of organic acids. During this period, organic anions contribute to an increase in ANC, while H+ concentrations remained similar to those in winter. These processes probably influenced the acidity and ANC of Bs horizon soil solutions but to a lesser extent than in the Oh horizon. Other mechanisms such as weathering and ion exchange involving H+ and Al may buffer solution acidity in the mineral soil.  相似文献   

5.
We evaluated the influence of the brown rot fungus Hygrophoropsis aurantiaca on P solubility in the humus layer of a podzolic forest soil. This fungus is known to exude large amounts of oxalic acid that may stimulate weathering of minerals and increase dissolution of humus, which in turn may increase P availability in the soil surrounding the fungus. Humus was inoculated using small wooden pieces colonised by the fungus. The presence of the fungus resulted in elevated concentration of PO4 in the humus solution. In a second experiment birch seedlings grown in the same humus were able to utilise the PO4 mobilised by the fungus to increase their internal P content. The factor determining this increased P uptake and the increased available P might be oxalate produced by fungus. The acid may directly dissolve P or change organic forms of P making it more susceptible to reaction with phosphatases. This fungal effect on P solubility diminished when N was added to the soil in the form of a slow release N fertilizer (methyl urea), or when a soil with a higher soil N concentration was used. We found a strong correlation between NH4+ concentration and total organic carbon in the soil solution at high NH4+ concentrations, suggesting the dissolution of humus as a result of the high NH4+ content in the solution. This study demonstrates that the wood-decaying fungus H. aurantiaca influences nutrient turnover in forest soil, and thereby nutrient uptake by forest trees. An intensified harvest of forest products such as whole tree harvesting may decrease the active biomass of the wood decomposers and may thereby change the availability of P and the leaching of N.  相似文献   

6.
Abstract

The work presents study results on the formation of humus horizons, the accumulation of organic carbon and nitrogen as well as humus composition in successional and reclaimed soils in a sand mine cast in southern Poland. Research plots were designed in chronosequence: 5, 17, 20 and 25 years. Increased thickness of humus horizon and accumulation of organic carbon was reported both in successional soils and in reclaimed soils. However, in corresponding age groups of reclaimed soils these characteristics were two times as high as in successional soils. The estimated accumulation rate of organic carbon (Corg) was three times higher and total nitrogen (Nt) five times higher in reclaimed soils than in successional soils. In both types of soils there was an increase in the amount of carbon trapped with humic and fulvic acid (CHa + CFa) and structure of humic acids. Studies indicated that reclamation treatment significantly accelerated soil-formation in opencast sand mine.  相似文献   

7.
Samples of strongly acid forest litter and humus from beneath Sitka spruce, heather, Scots pine and larch from two sites in north-east Scotland were incubated aerobically at 20°C in the laboratory. At the Glen Tanar site, spruce litter and larch humus showed significant nitrification and ammonification whereas spruce humus and Scots pine humus produced only NH4+-N. Heather humus showed no net mineralization. At the Fetteresso site, application of fertilizer N, P and K to Sitka spruce up to 3 yr previously, significantly stimulated the production of NO3-N in both litter and humus.Amendment of the samples with organic N as peptone caused significant increases in NO3-N production in those samples that already showed nitrification. The increases in NO3-N generally represented a low proportion of the added peptone-N. Amendment with NH4+-N as (NH4)2SO4 either had no effect or significantly reduced NO3-N production (in larch humus). The results suggest the occurrence of heterotrophic nitrification in some of these forest samples.Net immobilization of NH4+-N was typically greater in NH4+-N amended than in peptone amended samples, except for heather humus which showed complete immobilization of both N sources.Total mineral N produced at the end of the aerobic incubation was correlated (P < 0.01) with NH4+-N produced during a 30-day anaerobic incubation at 30°C. Net NO3-N production was greater in litter than in the corresponding humus samples and was correlated (P < 0.001) with initial organic N soluble in 1 m KCl.  相似文献   

8.
Priming effects initiated by the addition of 14С glucose have been compared for humus horizons of soils existing under continuous input of fresh organic substrates and for buried soil horizons, in which entering of organic matter has been essentially limited. The effect of microrelief on the manifestation of priming effect in the humus horizons of gray forest soil on microhigh and in microlow has been estimated. Humus horizon in soils on microhigh, not activated by glucose, produced two times more СО2 in comparison with soils of microlow. However, the introduction of glucose canceled the effect of microrelief on СО2 emission. The intensity of absolute priming effect correlated with the Сorg pool, initial microbial biomass, and enzyme activity, decreasing from humus horizons to the buried ones, and did not depend on microrelief. The effect of microrelief was observed, when assessing the priming effect relative to control (soil not activated by glucose): the value of relative priming effect was 1.5 times greater in А horizon of gray forest soil in microlow in comparison with that on microhigh being the result of increasing activity of enzymes.  相似文献   

9.
《Geoderma》1986,39(2):97-103
The 13C/12C ratios were determined for the organic matter of all horizons of a podzol profile and of the A1 horizons of some ferrallitic soils, in some grass shoots and in a fossil root fragment from the B2h horizon of the podzol. The isotope ratio in the organic matter of the A1 horizon of the podzol matches those in grass shoots from the present savanna vegetation. The ratios in the lower horizons match those of organic matter in the A1 horizons of soils under forest and that of the fossil root fragment in the B2h horizon. The ratios thus demonstrate that the humus enrichment of the B2h horizon of the podzol occurred while it was under forest vegetation and that the present grass vegetation did not take part in the podzolization process. The differences also indicate that savanna replaced forest vegetation after the profile had been formed.  相似文献   

10.
To clarify the mechanisms of pH buffering in forest ecosystems, field observations of pH and ionic concentrations in precipitation (R), throughfall (Tf), stemflow (Sf), and leachates from organ c horizons (Lo) were conducted for three years at three stands in Tomakomai (TK) and Teshio (TS) in Hokkaido, northern Japan. Weighted mean rates of H+ input as wet deposition at TK and TS were estimated in the range from 0.3 to 1.0 and 0.4–0.6 kmolc ha?1 y?, respectively. While the net H+ flux was reduced significantly by the forest canopy, net fluxes of other ions by throughfall, especially for Na+, Cl?, and SO4 2?, were apparently greater than those by precipitation. The canopy modification of the H+ flux was more remarkable under deciduous stands than under coniferous stands, suggesting that the efficiency of conifers as the collectors of dry deposition is greater than that of deciduous ones. More than 50% of H+ flux due to throughfall was absorbed by the organic horizons and the weighted mean pH of Lo at TK and TS was in the range from 4.9 to 5.5 and 5.0–5.5, respectively. Results from field observation and field leaching experiments, showed that the major H+ sinks of the organic horizons are exchange reaction of Ca2+, Mg2+ and K+. Organic acids or organo-metallic complexes of lower pK(=5.0–5.5) played a significant role as counter anions in O horizons leachate in coniferous forests. Our results indicate the importance of biogeochemical modifications in the canopy and organic horizon in acid buffering mechanisms of forest ecosystems.  相似文献   

11.
For a one year period intact Spodosol soil columns were percolated weekly with H2Odeion, 1.58 mmol H2SO4 L?1, and 0.79 mmol H2SO4 L?1+0.64 mmol HNO3 L?1, respectively. Decomposition rates, soil organic carbon (OC) solubilization, dissolved organic carbon (DOC) fractions, and Cr-, Cu-, and Cd-binding by dissolved hydrophobic and hydrophilic acids were studied. Acid treatment reduced significantly OC respiration as well as OC solubilization in the humic layers. The reduced OC solubility at acid addition was more pronounced for the less polar hydrophobic compounds, resulting in a decrease of the hydrophobic acids (from ca. 65 to 40–45% of DOC), and in an increase of the hydrophilic acids (from ca. 25 to 40–45% of DOC). For B horizon leachates, DOC increased at acid treatment. Generally, hydrophobic acids were retained preferentially in the B horizon. Also in the B horizon output there was an increase of the hydrophilic acids as acidity increased (from ca. 40 to 50% of DOC). Differences between the two acid treatments were negligible. The degree of metal-organic complexes decreased in the order Cr >Cu >Cd, from A to B horizon leachates, and with increasing acidity. Hydrophilic acids were found to be the dominating ligands in complexing Cr and Cu. Actual Cr- and Cu-binding by hydrophilic acids exceeded that by hydrophobic acids 2–8 times. As the hydrophilic acids represented the most mobile DOC components in the soil columns, in particular with increasing acidity, significant amounts of Cr and Cu in the B horizon leachates were organically complexed, although a great proportion of the hydrophobic acids was retained in the B horizon.  相似文献   

12.
Humus forms and metal pollution in soil   总被引:1,自引:0,他引:1  
Smelters in northern France are a serious source of soil pollution by heavy metals. We have studied a poplar plantation downwind of an active zinc smelter. Three humus profiles were sampled at increasing distance from the smelter, and the thickness of topsoil horizons was measured along a transect. We analysed the vertical distribution of humus components and plant debris to assess the impact of heavy metal pollution on the humus forms and on soil faunal activity. We compared horizons within a profile, humus profiles between them, and traced the recent history of the site. Near the smelter, poplar trees are stunted or dead and the humus form is a mor, with a well‐developed holorganic OM horizon. Here faunal activity is inhibited, so there is little faecal deposition and humification of plant litter. At the distant site poplar grows well and faunal activity is intense, so there are skeletonized leaves and many organo–mineral earthworm and millipede faecal pellets. The humus form is a mull, with a well‐developed hemorganic A horizon. The passage from mor to mull along the transect was abrupt, mor turning to mull at 250 m from the smelter, though there was a progressive decrease in heavy metal deposition. This indicates that there was a threshold (estimated to be 20 000 mg Zn kg?1) in the resilience of the soil foodweb.  相似文献   

13.
A total of 51 lakes in southern Quebec, Canada, were sampled between 1985 and 1993 to study changes in water chemistry following reductions in SO2 emissions (main precursor of acid precipitation). Time series analysis of precipitation chemistry revealed significant reductions in concentrations and deposition of SO4 2- from 1981 to 1992 in southern Quebec as well as reductions in concentrations and deposition of base cations (Ca2+, Mg2+), NO3 - and H+ in the western section of the study area. Reductions in atmospheric inputs of SO4 2- have resulted in decreased lakewater SO4 2- concentrations in the majority of the lakes in our study, although only a small fraction (9 of 37 lakes used in the temporal analysis) have improved significantly in terms of acidity status (pH, acid neutralizing capacity – ANC). The main response of the lakes to decreased SO4 2- is a decrease in base cations (Ca2++Mg2+), which was observed in 17 of 37 lakes. Seventeen lakes also showed significant increases in dissolved organic carbon (DOC) over the period of study. The resulting increases in organic acidity as well as the decrease in base cations could both play a role in delaying the recovery of our lakes.  相似文献   

14.
Rain water at two forested sites in Guangzhou (south China) show high concentrations of SO4 2?, NO3 ? and Ca2+ and display a remarkable seasonal variation, with acid rain being more important during the spring and summer than during the autumn and winter. The amount of acid rain represents about 95% of total precipitation. The sources of pollutants from which acid rain developed includes both locally derived and long-middle distance transferred atmosphere pollutants. The seasonal variation in precipitation chemistry was largely related to the increasing neutralizing capacity of base cations in rainwater in winter. Soil acidification is highlighted by high H+ and Al3+ concentrations in soil solutions. The variation in elemental concentration in soil solution was related to nitrification (H+, NH4 + and NO3 ?) and cation exchange reaction (H+, Al3+) in soil. The negative effect of soil acidification is partly dampened by substantial deposition of base cations (Ca2+, Mg2+ and K+) in this area.  相似文献   

15.
Processes pertinent to soil acidification with special emphasis on the solution chemistry of A1, were studied in three adjacent small catchments on the Swedish westcoast, with mixed coniferous forest and shallow podzols (average soil depth 50 cm). Soil solution from different depths, groundwater and stream-water were sampled. Separation of organic and inorganic Al species was done with an ion exchange technique. The concentration of organic A1 species was linearly correlated with the concentration of dissolved organic C (r,2, varied from 0.38 to 0.69 with p, < 0.001). In the A horizon 83 to 97 % of the dissolved A1 consisted of organic species. The average concentration of total A1 varied from 3.3 to 9.8 μmole 1?1, in soil leachates collected below the A0, horizon, and from 29.3 to 47.0 pmole 1?1, in leachates collected below the A2, horizon. The organic Al species decreased in importance with increasing soil depth. Leachates collected below the B horizon had average total A1 concentrations ranging from 95.3 to 115 pmole 1?1, with a contribution of organic species varying between 8 and 20% of the total concentration. Activity calculations indicated an equilibrium with A1(OH)SO4, (pK S = 17.23) in the lower part of the B horizon, while groundwater together with some of the leachates from the upper B horizon showed a better fit with A114(OH)10SO4 (pK1 = 117.51). Streamwater was obviously influenced by the soil organic matter in the outflow areas in terms of A1- organic matter complexes and protolysis of dissolved organic acids. There was a net outflow of Al and sulphate from the lower part of the B horizon compared to input in throughfall precipitation. The relative concentration increase varied from 64.4 to 78.0 (A1) and from 1.52 to 1.92 (sulphate). The relative increase due to evapotranspiration was estimated to be 1.4. The corresponding concentration factors for Mg and Ca were from 2.06 to 2.38, and from 0.81 to 1.07, respectively, indicating a very low Ca weathering. Data were compared with other studies, both recent and older ones. The possible influence from present-day levels of H+ and sulphurous compounds in the atmospheric deposition is evaluated.  相似文献   

16.
为了研究氮沉降对次生林土壤碳氮组分和酶活性的影响,以华西雨屏区湿性常绿阔叶次生林为对象,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g/(m^2·a))、低氮(LN,+5 g/(m^2·a))和高氮(HN,+15 g/(m^2·a))3个氮添加水平。在氮沉降进行27个月后,按照腐殖质层和淋溶层表层进行取样,测定不同土层土壤总有机碳(TOC)、可浸提溶解性有机碳(EDOC)、易氧化碳(ROC)、全氮(TN)、硝态氮(NO_3^-—N)和铵态氮(NH_4^+—N)含量以及蔗糖酶、脲酶、酸性磷酸酶和多酚氧化酶活性。结果表明:模拟氮沉降显著增加该次生林腐殖质层土壤的TOC和NH_4^+—N含量,显著增加腐殖质层和淋溶层表层土壤的NO_3^-—N含量,腐殖质层土壤C/N显著升高。淋溶层表层土壤TOC、NH_4^+—N、C/N以及2层土壤的EDOC、ROC、TN和NH_4^+—N/NO_3^-—N均无显著影响。2层土壤的多酚氧化酶活性均随着氮添加量的升高而降低,其中淋溶层表层达到显著差异。模拟氮沉降对蔗糖酶、脲酶和酸性磷酸酶活性均无显著影响。腐殖质层中,NH_4^+—N和NO_3^-—N含量与TOC含量存在极显著正相关关系。2层土壤的多酚氧化酶活性均与NO_3^-—N含量呈极显著负相关。结果说明,模拟氮沉降使该次生林中原本较高的腐殖质层土壤TOC含量进一步显著增加,并且促进土壤无机氮的积累,而模拟氮沉降对多酚氧化酶的抑制作用更加有利于土壤有机质的积累。  相似文献   

17.
Aluminum concentrations in organoaluminum complexes, mineral polymers, Al(H2O) 6 3+ , Al(OH)(H2O) 5 2+ , Al(OH)2(H2O) 4 + , AlH3SiO 4 2+ , and Al(OH)3(H2O) 3 0 extracted with 0.001 M CaCl2 from the main genetic horizons of a podzolic soil on two-layered deposits were determined experimentally and calculated from thermodynamic equations. It was found that aluminum bound in organic complexes was predominant in extracts from the AE horizon, and mineral polymer aluminum compounds prevailed in extracts from the E and IIBD horizons. In the AE horizon, organoaluminum compounds were a major source of aluminum, which passed into solution predominantly by exchange reactions. In the E horizon, aluminum hydroxide interlayers in soil chlorites were the main source of aluminum, which passed into solution by dissolution reactions. In extracts from the IIBD horizon, aluminum was solubilized by the dissolution of aluminosilicates inherited from the parent rock.  相似文献   

18.
Near-infrared spectroscopy and soil physicochemical determinations (pHH2O, organic matter content, total C content, NH inf4 sup+ , total N content, cation-exchange capacity, and base saturation) were used to characterize fire-or wood ash-treated humus samples. The spectroscopic and the soil physicochemical analysis data from the humus samples were used separately to explain observed variations in soil respiration and microbial biomass C by partial least-square regression. The first regression component obtained from the physicochemical and spectroscopic characterization explained 10–12% and 60–80% of the biological variation, respectively. This suggests that information on organic material collected from near-infrared spectra is very useful for explaining biological variations in forest humus.  相似文献   

19.
Ion mass and H+ budgets were calculated for three pristine forested catchments using bulk deposition, throughfall and runoff data. The catchments have different soil and forest type characteristics. A forest canopy filtering factor for each catchment was estimated for base cations, H+, Cl? and SO 4 2? by taking into account the specific filtering abilities of different stands based on the throughfall quality and the distribution of forest types. Output fluxes from the catchments were calculated from the quality and quantity of the runoff water. Deposition, weathering, ion exchange, retention and biological accumulation processes were taken into account to calculate catchment H+ budgets, and the ratio between external (anthropogenic) and internal H+ sources. In general, output exceeded input for Na+, K+, Ca2+, Mg2+, HCO 3 ? (if present) and A? (organic anions), whereas retention was observed in the case of H+, NH 4 + , NO 3 ? and SO 4 2? . The range in the annual input of H+ was 22.8–26.3 meq m?2 yr?1, and in the annual output, 0.3–3.9 meq m?2 yr?1. Compared with some forested sites located in high acid deposition areas in southern Scandinavia, Scotland and Canada, the catchments receive rather moderate loads of acidic deposition. The consumption of H+ was dominated by base cation exchange plus weathering reactions (41–79 %), and by the retention of SO 4 2? (17–49 %). The maximum net retention of SO 4 2? was 87% in the HietajÄrvi 2 catchment, having the highest proportion of peatlands. Nitrogen transformations played a rather minor role in the H+ budgets. The ratio between external and internal H+ sources (excluding net base cation uptake by forests) varied between 0.74 and 2.62, depending on catchment characteristics and acidic deposition loads. The impact of the acidic deposition was most evident for the southern Valkeakotinen catchment, where the anthropogenic acidification has been documented also by palaeolimnological methods.  相似文献   

20.
For a quantitative analysis of SOC dynamics it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. We used the 13C isotope to determine the incorporation of maize residues into the soil organic carbon (SOC), to trace the origin of the dissolved organic carbon (DOC), and to quantify the fraction of the maize C in the soil respiration. The maize‐derived SOC was quantified in soil samples collected to a depth of 65 cm from two plots, one ’︁continuous maize’ and the other ’︁continuous rye’ (reference site) from the long‐term field experiment ’︁Ewiger Roggen’ in Halle. This field trial was established in 1878 and was partly changed to a continuous maize cropping system in 1961. Production rates and δ13C of DOC and CO2 were determined for the Ap horizon in incubation experiments with undisturbed soil columns. After 37 years of continuous maize cropping, 15% of the total SOC in the topsoil originated from maize C. The fraction of the maize‐derived C below the ploughed horizon was only 5 to 3%. The total amount of maize C stored in the profile was 9080 kg ha−1 which was equal to about 31% of the estimated total C input via maize residues (roots and stubble). Total leaching of DOC during the incubation period of 16 weeks was 1.1 g m−2 and one third of the DOC derived from maize C. The specific DOC production rate from the maize‐derived SOC was 2.5 times higher than that from the older humus formed by C3 plants. The total CO2‐C emission for 16 weeks was 18 g m−2. Fifty‐eight percent of the soil respiration originated from maize C. The specific CO2 formation from maize‐derived SOC was 8 times higher than that from the older SOC formed by C3 plants. The ratio of DOC production to CO2‐C production was three times smaller for the young, maize‐derived SOC than for the older humus formed by C3 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号