首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During one year, samples from eight drainage lakes, seven run-off stations and three deposition sites from various geographical areas in Sweden were collected and analyzed for methyl Hg (MeHg) and total Hg (Hg-tot). The MeHg concentrations ranged from 0.04 to 0.64 ng L?1, 0.04 to 0.8 ng L?1, and <0.05 to 0.6 ng L?1 in run-off, lake water and rain water, respectively. The corresponding Hg-tot concentrations were found in the range 2 to 12 ng L?1, 1.35 to 15 ng L?1, and 7 to 90 ng L?1, respectively. A Hg-tot level of about 60 ng Hg L?1 was found in throughfall water. The MeHg and Hg-tot concentrations are positively correlated in both run-off and lake water, but not in rain and throughfall water. A strong positive correlation between the MeHg, as well as the Hg-tot concentration, and the water color is observed in both run-off and lake waters, which suggests that the transport of MeHg and other Hg fractions from soil via run-off water to the lake is closely related to the transport of organic substances; and is a consequence of the biogeochemical processes and the water flow pathway. The ratio between the mean values of MeHg and Hg-tot seems to be an important parameter, with an indicated negative coupling to the mean value of pH for run-off water, but a strong positive correlation to Hg-content in fish, the ratio between the area of the catchment and the lake, as well as to the retention time of lake.  相似文献   

2.
Water samples from 78 private potable wells in southern New Jersey were collected for mercury analysis in 1991–1992. Analyses were performed for the quantification of reactive, volatile and methyl mercury species. Relationships of mercury with other water quality parameters were evaluated also. Total mercury concentrations varied from <1 ng L?1 to over 36 Μg L?1. The dominant forms in which mercury occurred in the wells sampled were Hg? and HgCl2?, although methyl mercury was present in some wells and comprised up to 8% of the total mercury in the ground water samples.  相似文献   

3.
4.
Surficial sediments were sampled with a light-weight gravity corer at 175 sites in 73 Ontario and Québec lakes and Zooplankton was collected with a 225 μm mesh size net in 24 lakes. Hg concentrations in surficial sediments (0–2 cm) ranged from 3 to 267 ng g?1 dry weight with a mean of 80 ng g?1 dry weight for all sites. A regression model including organic content of sediments and the ratio of the catchment area/lake surface explained 60% of the variation in sediments Hg concentrations. Hg in Zooplankton ranged from about 25 to 377 ng g?1 dw with a mean of 108 ng g?1 dw and was weakly correlated with catchment area, primary productivity and TOC. Our data indicate that an important fraction of Hg originates from the catchments, but do not show a clear west-east regional gradient for Hg concentrations in surficial sediments or in zooplankton.  相似文献   

5.
Yearling yellow perch were collected from sixteen Muskoka-Haliburton lakes to determine interrelationships between water quality, Hg residues in fish and fish condition. The lakes studied were Precambrian shield lakes with a pH range of 5.6 to 7.3 and total inflection point alkalinities of 0.4 to 16.0 mg L?1. Mercury residues in yellow perch ranged from 31 to 233 ng g?1 and were inversely correlated (p < 0.001; r = 0.84) with lakewater pH. Stepwise linear regression analyses selected lakewater pH as the only significant parameter associated with Hg accumulations. Alkalinities, sulphate, Ca and dissolved organic carbon (DOC) were not selected as significant. Likewise, lakewater pH and Hg residues in yellow perch were inversely (p < 0.001) correlated with fish condition. Lakewater pH, accounted for 74% and Hg in fish a further 11% of the variability in fish condition. Terrestrial drainage size/lake volume ratios were also correlated (p < 0.05; r = 0.78) with Hg accumulations in perch from a subset of nine headwater lakes. No temporal trends in Hg residues were evident in yellow perch over a 9 yr interval (1978–1987).  相似文献   

6.
The purpose of this study was to gather information on the spatial and temporal variation of stream water total mercury concentrations ([THg]) and to test the hypothesis that stream water [THg] increases as stream pH decreases in the Shenandoah National Park (SNP). We based our hypothesis on studies in lakes that found mercury methylation increases with decreasing pH, and studies in streams that found total mercury and other trace metal concentrations increase with decreasing pH. Stream water was collected at baseflow in SNP in April, July, and October 2005 and February 2006. Contrary to our hypothesis, stream water [THg] decreased with decreasing pH and acid neutralizing capacity. In SNP, stream pH and acid neutralizing capacity are strongly influenced by bedrock geology. We found that bedrock also influences stream water [THg]. Streams on basaltic bedrock had higher [THg] (0.648 ng L?1?±?0.39) than streams on siliciclastic bedrock (0.301 ng L?1?±?0.10) and streams on granitic bedrock (0.522 ng L?1?±?0.06). The higher pH streams on basaltic bedrock had the highest [THg]. The variation in stream water [THg] occurred despite no known variation in wet deposition of mercury across the SNP. The findings of this study indicate that the SNP can be an important area for mercury research with significant variations in mercury concentrations across the park.  相似文献   

7.
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg?=?44?±?15 ng L?1, DOC?=?63.0?±?31.3 mg L?1, pH?=?4.05?±?0.53) than at the northern site (Hg?=?22?±?6 ng L?1, DOC?=?41.8?±?12.1 mg L?1, pH?=?4.28?±?0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34?±?0.06 μg g?1 dw and 0.76?±?0.14 μg g?1 C, respectively) than at the northern site (0.31?±?0.05 μg g?1 dw and 0.70?±?0.12 μg g?1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.  相似文献   

8.
The B concentration was determined in bulk deposition and in surface freshwaters (lakes and rivers) of the river Po watershed in Northern Italy. The curcumin photometric method was used to determine B content for all analyses. The B concentrations were under detection limits (0.06 mg B L?1) in bulk deposition and below 0.09 mg B L?1 in lake waters. Approximately 65 % of river samples measured had B concentrations close to natural background levels for natural waters (0.1 mg B L?1). There was a strong correlation (r < 0.85) between B concentration and those of both total dissolved P and anionic detergents. The elevated B concentrations may be related to anthropogenic sources.  相似文献   

9.
The sources and concentrations of total mercury (total Hg) and methylmercury (MeHg) in the upper catchment of the Lake Gordon/Lake Pedder system in Tasmania, Australia were investigated. The catchment area, which contains over 50% wetlands, is located in a temperate region with no obvious point sources of mercury. Surface waters in the region had concentrations of total Hg ranging from 1.2 to 14.4 ng L-1 and MeHg from < 0.04 to 1.4 ng L-1. MeHg concentrations were seasonally dependent, with the highest concentrations occurring in summer. Sediments/soils in the catchment had concentrations of total Hg ranging from 4.0 to 194 ng g-1 and MeHg from <0.02 to 20.1 ng g-1. The low concentrations of total Hg confirmed that this region is pristine as regards mercury and has no geological enrichment of total Hg. The highest total Hg and MeHg concentrations in both sediment/soils and waters were found in bogs whereas the lowest concentrations typically occurred on the wetlandplains. MeHg concentrations, in bog and swamp sediments were correlatedwith the organic matter content (r = 0.942, P < 0.001). Acid volatile sulfide (AVS) measurements indicate that in most sediments AVS was greater than total Hg. Given the high reactivity of inorganic mercury and sulfide, this suggests that most of the particulate mercury in sediments is present as mercuric sulfide. The yield of MeHg from the catchment was estimated to be 3.2 mg ha-1 yr-1 and is higher than published rates measured in non-contaminated temperate catchments in the northern hemisphere. The higher yield was attributed to the generally warmer climatic conditions that favour net methylation and the relatively high rainfall (2–3 m yr-1) of the region, which supplies reactive inorganic mercury to the active zones ofmercury methylation and also flushes MeHg from the catchment.  相似文献   

10.
Variation of mercury (Hg) in sediments and biota from Coatzacoalcos estuary during the dry, rainy and windy seasons was estimated. In sediments, Hg concentrations ranged from 0.07 μg g?1 in site 13 (Ixhuatepec) located upstream, to 1.06 μg g?1 in site 3 (Coatzacoalcos river), located in the industrialized area. Highest enrichment factor (EF) and index of geoaccumulation (I geo) in surficial sediments were 53 and 5.1 respectively. From EF and I geo, it is considered that Coatzacoalcos estuary is from moderately contaminated to contaminated. In most fish species from Coatzacoalcos estuary, the sequence of Hg concentration was liver>muscle>gills. Average Hg concentrations in soft tissue of bivalves ranged from 0.09 μg g?1 in Corbicula fluminea to 0.18 μg g?1 in Polymesoda caroliniana. Biota-sediment accumulation factor (BSAF) ranged from 0.9 in P. caroliniana during the rainy season (site 4) to 3.8 in P. caroliniana from the same site during the windy season.  相似文献   

11.
A sampling and analysis program has been completed between 1995 and 1998 in order to determine mercury concentrations in water, sediments, soils and fish in the Piracicaba river basin, one of the most populated and industrialized regions in Brazil. In sediment, the average Hg concentrations varied between 33 ± 17 ng g?1 and 106 ± 78 ng g?1, in samples collected during the rainy and dry season, respectively. The same averages were also found for soil samples (35 ± 14 and 109 ± 61 ng g?1). In water, the total Hg concentration varied between < 1.1 and 24.0 ng L?1. In piscivore fish, up to 943 μ g Hg kg?1 was found. Our results show that all compartments undergo Hg contamination, in view of the levels found in pristine environments. Water contamination seems to be due mainly to diffuse processes of soil erosion and suspension of river bed sediment during the rainy season. Also untreated wastewaters generated by industrial activities and from domestic sewage appear to be potential non-point sources in the most industrialized and populated part of the basin. On the other hand, atmospheric transport of mercury originating from the Campinas Metropolitan Region could be another source of mercury contamination, especially in the basin headwaters.  相似文献   

12.
Mercury concentrations were measured in samples of peat soils, sediments and clams (Rangia cuneata) from a peatland region of the Albemarle-Panlico Peninsula of North Carolina. Total Hg concentrations in peat cores ranged from 40 to 193 ng g?1 (dw); no depth-related trends were noted. Mercury concentrations in surface sediments from canals draining the peatlands and from the Pungo River that receives this drainage ranged from 8 to 20 ng g?1 (dw). Selective extractions of these peat and sediment samples revealed that the bulk of the Hg was associated with organic matter-associated fractions (particularly humic/fulvic acid bound and organic-sulfide bound fractions). No Hg was detected in the relatively mobile and bioavailable water-soluble or ion-exchangeable fractions. Total Hg concentrations in the soft tissues of clams from the Pungo River ranged from 25 to 32 ng g?1 (ww). No concentrations of methyl Hg above the detection limit of a 25 ng g?1 were measured in soils, sediments, or clams. These data indicate that Hg concentrations in this region are at the low end of the distribution of levels reported for uncontaminated systems and that mining of these peatlands is unlikely to significantly elevate Hg concentrations in the receiving estuarine system.  相似文献   

13.
The processes affecting the concentrations of total mercury (total Hg) and methylmercury (MeHg) in a freshwater system comprising two connected reservoirs in southwest Tasmania were investigated. Surface concentrations of total mercury (total Hg)were temporally and spatially uniform in both Lake Gordon (2.3±0.4 ng L-1, n = 27) and Lake Pedder (2.3±0.3 ng L-1, n = 11). The surface concentrations of MeHg in Lake Gordon (0.35±0.39 ng L-1, n = 25) were more variable than total Hg and MeHg typically comprised 10–20% of total Hg. The relatively high amount of total mercury present as MeHg in Lake Gordon was attributed to the high proportion of wetlandsin the upper catchment (50% of total area) and in-lake contributions (ca. 40% of total MeHg). Despite the close proximity of the two lakes, MeHg concentrations in Lake Pedder were consistently lower than in Lake Gordon. This phenomenon canbe explained in part by the greater contribution of direct rainfall to Lake Pedder leading to the dilution of MeHg. Water column MeHg concentrations were higher in warmer months in bothlakes, reflecting increased net methylation of inorganic mercury.Unlike previous studies of seasonally anoxic lakes, depth profiles of total mercury and MeHg in Lake Gordon were uniform and were not affected by water column stratification occurringin the summer months, and oxygen depletion with depth. This suggests that redox cycling and accumulation of MeHg in the hypolimnion following seasonally-induced anoxia is not a significant part of the mercury cycle in Lake Gordon. The primary location of MeHg production within the lake's water column is not conspicuous. Mercury speciation measurements made above and below the lake system over a period of 19 months indicates that after 20 yr of impoundment, the reservoirs are not significantly affecting MeHg concentrations in the downstreamriverine environment.  相似文献   

14.
Concentrations of methyl mercury (MeHg) and total mercury (THg) in precipitation were measured at the Experimental Lakes Area (ELA), a remote field station in northwestern Ontario. We found that precipitation was a source of both MeHg and THg to boreal ecosystems, but at lower rates than in industrialized regions of North America and Scandinavia. MeHg concentrations in precipitation ranged from 0.010 to 0.179 ng L?1 and were highest when events originated west of the ELA. THg concentrations in precipitation ranged from 0.95 to 9.31 ng L?1 and were highest when the events came from the southeast. There was no relationship between THg and MeHg over time in precipitation. Inputs of both MeHg and THg to ecosystems were highest during summer months.  相似文献   

15.
In order to test whether major reductions in acid inputs had improved water quality sufficiently for fish populations to recover, we stocked wild European perch (Perca fluviatilis) in three highly acidified lakes that had previously supported this species, and in one limed lake. The fish, which were introduced from a local lake (donor lake), generally ranged from 12 to 16 cm in total length, and were stocked at densities of 117–177 fish ha?1. The untreated lakes were highly acid, with minimum pH values and maximum inorganic aluminium concentrations (Ali) during the spring of 4.6–4.7 and 118–151 µg L?1 respectively. In the limed lake, the corresponding values for pH and Ali ranged between 5.8 and 6.6 and 5 and 19 µg L?1 respectively. Gill-netting in two subsequent years after the introduction yielded only a few recruits (0+) and one adult in one of the three acidified lakes in one year only. However, stocked perch reproduced successfully in both years in the limed lake. There was a significant linear relationship between the catches (CPUE) of juvenile perch (age 0+) in the different lakes in the autumn and the water quality in May (time of hatching), both in terms of Ali (r 2=0.934, P<0.05) and pH (r 2=0.939, P<0.05). Our data suggest unsuccessful recruitment in waters of pH <5.1 and Ali>60 µg L?1.  相似文献   

16.
The toxicity of organophosphate insecticides, mainly phosphamidon, monocrotophos and dichlorvos to the blood clamAnadara granosa, occurring in Kakinada Bay of the Godavari estuarine system was measured. The LC50 values of three insecticides for 24,48,72 and 96 hr exposure ranged from 4.26 to 11.53 mg L?1 for phosphamidon, 3.50 to 9.31 mg L?1 for monocrotophos and 1.79 to 6.20 mg L?1 for dichlorvos. Dichlorvos proved highly toxic even at low concentrations compared to either phosphamidon or monocrotophos. The animals showed decreasing activity with increasing insecticide concentrations and duration of exposure. However, there was no marked difference in the toxicity between phosphamidon and monocrotophos.  相似文献   

17.
Lakes within 20 km of Sudbury, Ontario, have significantly higher Cd concentrations in surface waters (geometric mean 122 ng L?1; n = 7) than lakes elsewhere in central Ontario (10.8 ng L?1; n = 57). Cadmium concentrations in water from lakes beyond the Sudbury halo were negatively correlated (r = 0.797; p < 0.001) with pH. A weak correlation between fluoride and Cd concentrations leads to speculation that some Cd may be mobilized from watersheds with Al. Cadmium concentrations in littoral sediments are not elevated near Sudbury. The geometric mean Cd concentration of littoral sediments in central Ontario lakes is 0.08 mg Cd kg?1 dry mass (n = 75). Cadmium concentrations in littoral sediments are strongly correlated with sediment loss on ignition (r = 0.860; p < 0.001). After correction for differences in organic content, littoral sediments are less enriched with Cd than profundal sediments, as reported in the literature. The difference between littoral and profundal sediments, and the sensitivity of Cd concentrations in water to pH, may be due to the importance of Cd binding by Fe/Mn hydrous oxides in the profundal zone, while organic matter binds Cd in the littoral zone. The lack of sensitivity of Cd concentrations in littoral sediments to acidification may be due to the incorporation of much of the Cd in those sediments into organic particulates.  相似文献   

18.
Dissolved and particulate Hg speciation was determined on four occasions in the Spring to Fall interval of 1989, at three depths of the water column of Onondaga Lake, New York; an urban system in which the sediments and fish flesh are contaminated with Hg. Species determined included total Hg (Hgt), reactive (‘ionic’) Hg (Hgi), monomethylmercury (CH3HgX), elemental Hg (Hg°) and dimethylmercury (CH3)2Hg). Onondaga Lake was found to contain very high levels of Hgt (2 to 25 ng L?1 Hg), Hgj (0.5 to 10 ng L?1 Hg), and CH3HgX (0.3 to 7 ng L?1 Hg), which generally increased with depth in the lake. These concentrations represent a significant level of contamination, based upon comparisons with other polluted and pristine sites. Elemental Hg levels were typically about 0.05 ng L?1 and (CH3)2Hg was near the limits of detection (?0.001 ng) L?1 in most samples. The greatest CH3HgX concentrations in the hypolimnion, as well as the largest gradients of both CH3HgX and (Hgt), were observed upon the first onset of stratification, in early summer. These concentrations did not become more pronounced, however, as stratification and H2S levels in the hypolimnion increased throughout the summer. The very low concentrations of (CH3)2Hg in these MeHg and sulfide-rich waters calls into question the belief that CH3HgX and H2S will react to yield volatile dimethyl-mercury, which can then escape to the atmosphere by diffusion. Mercury speciation was highly dynamic, indicating active cycling within the lake, and an apparent sensitivity to changes in attendant Iimnological conditions that track the stratification cycle.  相似文献   

19.
The purpose of this study was to quantify discharges and P-loads from peaty polders (total surface area 11560 ha) surrounding lakes in south-western Friesland , and to examine whether processes inside the polders contribute to the P-loads to the lakes. A detailed study in the Echtener Veenpolder (2850 ha), the largest polder in the study area, showed annuall gross P-loads of 1.3 to 1.83 kg P ha?1 polder area and net P-loads of 0.63 to 1.48 kg P ha?1 Processes inside this polder, such as leaching, surface runoff, resuspension, spreading manure and fertilizers, can result in high total P concentrations (TP) in discharged polder water (up to 0.9 mg L?1) and therefore contribute to the P-load from the polder to lake Tjeukemeer. During 1984–1987 the averaged TP concentrations in polder water were higher than in lake Tjeukemeer water: 0.37 mg L?1 and 0.28 mg L?1, respectively. The annual gross P-loads from 11 other polders ranged from 1.01 to 4.13 kg P ha?1 polder area, while TP concentrations reached values up to 3.0 mg L?1. The P-loads from five polders to lake Tjeukemeer were high compared with the loads to the other lakes in the district. Particularly, during the winter period (October–April) P-loads were highest: up to 3.13 kg P ha?1. This paper shows that hydrological measures and the reduction of the concentrations are important to combat the eutrophication problem in the lakes. However, for an optimally integrated water management of the polders, further research is needed to develop, for example, dynamical water and P balances in order to gain a better insight into the role of agriculture.  相似文献   

20.
In order to understand the bioaccumulation of mercury in fish in the Iranian coastal waters of the Caspian Sea and the Persian Gulf, different fish species were sampled from both regions in January 2002. Mullet fishes were sampled from the Caspian Sea and six other species from the Persian Gulf: Largetooth flounder, Spotfin flathead, Japanese threadfin bream, Greater lizardfish, Elongate sole and Giant seacatfish. In the Persian Gulf, total Hg concentrations in fish ranged from 0.0123 to 0.0867 mg kg?1 w.w. (0.0614 to 0.433 mg kg?1 d.w.). Methylmercury accounts for 64–100% of the total mercury. Highest mercury concentrations were observed in the predatory fish: Giant seacatfish, Threadfin bream and the larger Greater lizardfish caught near Mogham Port. In these species the methylmercury fraction is always higher than 90%. A low methylmercury fraction was only observed in the smallest specimen of flounder and Elongate sole. In the Caspian Sea Hg concentrations in Mullet ranged from 0.0102 to 0.108 mg kg?1 w.w. The observed concentrations are comparable to those found in other areas of the Persian Gulf as well as in other marine environments and are much lower then the WHO guideline of 0.5 mg kg?1 w.w.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号