首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
玉米精播机漏播补偿系统设计   总被引:21,自引:2,他引:21  
目前玉米免耕播种机的播种质量仍低于常规播种。本文讨论了微机控制的排种监测及漏播补偿装置,通过机电结合手段解决漏播问题。台架试验表明本装置能够准确发现漏播,并通过采取的措施实现及时补种,补种成功率可达90%以上。  相似文献   

2.
目前,机械式播种器研究较为成熟,但因本身结构特点难于播种长圆、扁等各种不规则形状的作物种子,而气吸式播种器尤其擅于播种棉籽、打瓜、葫芦籽、甜菜及玉米等种子。目前,播种机的监测装置大多使用机械式、压电传感器针对播种管、种料箱进行信号采集,并非在播种器内部进行监测。为此,设计了一种运用光敏二极管模块、霍尔传感器和单片机微处理器的气吸式播种机播种监测装置,实现了对播种机漏播、播种数统计,以及漏种报警等功能。播种监测系统试验结果表明:监测单元安装误差不应大于2.2mm,此时系统的漏播监测精度、播种数监测精度均大于95%。该气吸式播种监测系统符合监测要求,可避免过度漏播及无种空跑,提高了播种效率,降低了经济损失。  相似文献   

3.
介绍了一种播种机漏播和播种轨迹自动监测报警装置,主要包括控制系统、信号接收系统、信号转换系统和信号放大系统。该装置操作简单、灵活方便、工作可靠,可在国内播种机上推广应用。   相似文献   

4.
免耕播种机是现代化农业耕种常用的农机之一,其漏播率是制约播种机作业质量的关键。为了降低免耕播种机作业时漏播率,提高播种机作业时智能化和自动化漏播监测水平,提出了一种基于Android和4G通信图像采集与传输的漏播检测系统,并将其成功地应用到了气动式免耕播种机上,完成了装置的安装和调试。采用小波算法对采集图像和信息进行了滤波处理,通过图像的去噪,降低了设备和耕种作业环境对播种机的影响。开发了手持终端的Android系统界面,包括漏播率报告、漏播次数显示、播种时长、田间作业历史数据和漏播报警等功能。最后,通过对历史漏播数据的查询,调试了系统的漏播检测功能,由调试结果发现:一天的作业累计漏播率小于1%,满足播种作业的设计要求,也验证了基于Android和4G通信系统播种机漏播检测系统的可行性。  相似文献   

5.
为了降低播种机的漏播现象,提高播种机械作业的质量和自动化水平,提出了一种新的漏种补播系统,并利用Zig Bee无线传感网络设计了播种机作业状态的远程监控平台。该系统以51单片机为控制核心,在排种器上设计了漏报监测的红外线传感器,当监测到漏播时可以通过单片机控制偏心电机的振动,实现再次补种;利用Zig Bee无线传感网络,可以对故障进行远程报警。为了验证该系统的可靠性,对试验样机进行了测试,结果表明:对于1d Bm的信号,在远处通讯距离可以延长接近100m,其通信性能较好,播种机的漏播率较低,在漏播后的补种率非常高,达到了98%以上,从而大大提高了播种机的作业效率和质量。  相似文献   

6.
2BQ-28型三七精密播种机基本能够满足三七工厂化育苗的农艺要求,整体播种效果良好,但播种时漏播现象还比较突出。为此,针对2BQ-28型三七精密播种机设计了一套漏播检测集成系统。系统选用3对红外发射接收管360°对称分布,实现了对精密播种的无盲区检测。传感器发射信号通过LM393双电压比较集成电路传输给单片机。结合三七精密播种机的排种频率与检测信号对比,采用串口通信的方式将播种数、漏播数及漏播率的参数显示在OLED屏,实现实时监测。传感器和检测电路都集成在8cm×8cm的PCB板上,实现检测与安装的一体化。实验结果表明:漏播检测集成系统的检测精度达到95%以上,并具有较高的稳定性。  相似文献   

7.
播种机在播种过程中普遍存在漏播、重播及堵塞等情况,因此播种机的质量监测是非常重要的。为此,将播种机智能化监测和反馈调节系统引入到了播种机的设计上,并根据英语关键词句匹配原理提出了基于故障匹配反馈调节的播种机智能化控制系统。为了验证系统的可行性,采用神经网络算法和故障匹配方法对播种机控制系统进行了设计,并对播种性能进行了测试。测试结果表明:相比其他系统,本系统的监测精度较高,与人工监测结果基本吻合;从播种情况来看,具有更低的漏播率和重播率,播种精度较高,可以满足精密播种机的设计需求。  相似文献   

8.
为有效监测玉米播种质量,减少漏播、断行的发生,设计一套基于光电法原理的玉米漏播监测器。采用3 mm红外发光管和硅PIN光电二极管作为感测元件,利用光伏效应原理设计了传感器,以检测种子通过与否。以stm32F103单片机为核心,设计了主控制器。主控制器通过中断方式接收传感器的信号,种子通过时即触动内部相应定时器工作或复位,定时计数超过3 s 时就产生报警信号并在屏幕上显示。田间试验表明:在播种机正常排种频率范围内,计数误差不低于97%,漏播检测率达到95%,光照强度、机具振动对漏播监测器工作无影响。  相似文献   

9.
为了能够直观观察到播种机的作业状态,识别播种机的种子破碎和漏播,并进行补种,设计了基于三维可视化技术的播种机。通过采用三角测量方法对摄像机的图像进行三维重建,实现了精密播种机的实时监控。结合光电传感器装置对播种过程中种子破碎和漏播进行检测,并对该区域进行补种。使用该播种机对玉米和小麦进行了播种试验,结果表明:播种机能够适应不同类别的种子,播种精度和准确率较高,能够满足播种机的性能要求。  相似文献   

10.
免耕播种机漏播补偿系统设计与试验   总被引:3,自引:0,他引:3  
针对免耕播种机作业时存在漏播问题,设计了一种漏播自动补偿系统,建立了补偿装置驱动的数学模型,应用滑模变结构控制算法设计了补偿系统控制器,并对补偿系统的动态响应性能进行了仿真分析。通过补种控制算法,确定了补种机构与主排种器的距离S和离地高度H,得到了补种排种盘转速n和播种机行进速度v_m、粒距L_l之间的关系曲线,对排种器安装高度H、粒距L_l、传送带速度v_m进行了二次回归正交试验,验证了漏播补偿系统的补种性能。台架试验的最佳工况组合为,补种排种器安装高度15.33 cm、粒距25.16 cm、传送带速度3.52 km/h时,补种成功率可达96.5%。田间试验表明,安装漏播补偿系统后,免耕播种机播种合格率均值为98.72%,有效提高了播种质量。  相似文献   

11.
基于Zig Bee无线传感网络技术、以播种机作为研究对象,设计出一种无线传感网络技术控制下的播种机漏播补种系统平台,并利用Zig Bee无线传感网络通信技术,实现对机械运作中的故障进行远程监控、报警。同时,为了更进一步的验证该播种机漏播补种系统设计的可靠性、安全性、稳定性,专门对试验样机进行了测试。  相似文献   

12.
玉米是我国主要粮食产物,播种质量对玉米产出量和经济效益影响很大,随着农业机械的普及,玉米的机械化播种率显著提高,但同时播种设备粗放性特征明显,播种精度不足,作业过程中重播、漏播、播深不足等问题较多。为进一步提高玉米播种质量,分析了玉米播种质量检测的典型技术及理论,结合我国玉米生产实际需求设计了监测系统功能,并进行了软硬件设计选型与适配,研究结果对玉米精量播种机技术升级具有借鉴意义。  相似文献   

13.
玉米免耕播种机漏播补偿方法对比研究   总被引:2,自引:0,他引:2  
吴南 《农业机械学报》2020,51(S2):41-46,78
为解决玉米免耕播种机播种作业时存在漏播的问题,针对漏播自补偿和漏播辅助补偿方法进行了对比研究。对水平圆盘排种器的排种性能进行试验,获取了排种器在不同排种盘转速和播种粒距下排种合格指数、漏播指数和重播指数。由漏播自补偿补种性能分析可得,在排种口检测漏播信号进行加速补种,补种的实际粒距LPR>1.5L,补种粒距依然为漏播,无法实现漏播补偿功能,若在种子脱离排种口之前检测到漏播信号,提前做好加速准备再进行补种,可实现漏播自补偿功能。由漏播自补偿试验可知,漏播自补偿受播种速度和播种粒距影响较大,在播种粒距为20、25cm,播种速度不大于5km/h时,补种合格率不小于88%,在播种粒距为15cm或播种速度大于5km/h时,补种合格率较低;由漏播辅助补偿补种性能试验可知,在播种速度3~7km/h,粒距15~25cm下,补种成功率不小于89%,在播种速度不大于5km/h,补种合格率不小于96%。为了保证补种位置精确,采用漏播辅助补偿装置进行补种,〖JP2〗需合理设计漏播补偿装置安装位置,同时受播种速度、播种粒距、排种盘线速度、投种角的影响,通过合理设计补种装置安装参数后,控制补种装置响应时间t和补偿装置排种盘的线速度vb实现补种位置的精确控制。  相似文献   

14.
甘蔗种植机漏播监测与标记系统   总被引:2,自引:0,他引:2  
设计了一种用于实时切种式甘蔗种植机的漏播监测与标记系统,采用光幕传感器监测蔗种下落情况,漏播发生时漏播标记装置用石灰在漏播的蔗垄旁边标记出漏播位置。该系统在室内试验台及田间种植机上进行了试验。结果表明:系统监测到的蔗种种距与人工测量种距回归分析的决定系数R2为0.991。田间试验中漏播标记的起点与实际漏播起点之间距离偏差Qp的均值为-83 mm,标准差为216.1 mm。相应的漏播终点偏差Zp的均值为-63 mm,标准差为155.6 mm。试验表明,该系统标记的漏播位置可以为人工补种提供可靠依据。  相似文献   

15.
玉米免耕精密播种机漏播补偿系统的研究   总被引:1,自引:0,他引:1  
研制的漏播补偿系统,采用等待补种、实时充种的方式,根据补种过程各动作时间关系,控制电磁阀和补种系统排种器动作时间,实现适时补种。该系统以2BYFZ-4型玉米免耕精密播种施肥机为载体进行田间试验,结果表明:安装漏播补偿系统后,机具在5~7km/h速度下播种合格率提升至99. 47%、99. 35%、98. 75%,漏播补偿系统补种性能良好。  相似文献   

16.
玉米精量播种监测系统的设计与试验   总被引:1,自引:0,他引:1  
针对玉米精播机作业时常会发生导种管堵塞、地轮排种轴机械传动系统故障及种箱排空造成的漏播等现象,基于单片机技术设计了一套玉米精量播种监测系统,包括整体结构与排种监测传感器电路,完成了相关参数设置。该系统实现了对玉米精播机的播种量、播种速度、播种面积、地轮转速、排种轴转速、种箱料位及机具升降状态等指标的实时监测和漏播故障诊断功能,支持对精播机作业数据远程实时监控管理功能。试验结果表明:玉米精量播种监测系统单粒测量精度约为98.8%,能够实现作业过程的实时监测及远程监管功能。  相似文献   

17.
基于PLC监测系统和远程控制的玉米播种机设计   总被引:1,自引:0,他引:1  
为了提高玉米播种机的自动化水平和播种精度,设计了一种新型的基于PLC监测系统的远程控制玉米播种机,并对玉米播种机的开沟机械装置和播种机械装置进行了改进,结合PLC监测和控制技术,实现了播深、排种精度和播种机行驶方向的实时监测和控制。为了实现播深和排种精度的自动化调节,使用PLC对开沟器和排种轮进行实时监测,并利用四连杆结构和直流驱动电机对其进行控制,采用灰色预测模型对排种器的排种轮转速进行预测,可以有效地提高播深和播种精度控制的自动化水平。最后,对播种机的性能进行了测试,通过测试发现:基于PLC监测系统的远程控制播种机可以有效地对排种轮转速、播种机行驶速度、行驶方向进行实时监测,播种机的漏播率和重播率都较低,满足高精度播种机的设计需求,为现代化播种机的设计提供了较有价值的参考。  相似文献   

18.
为了提高免耕播种机播种深度的一致性,提高农业生产规范化作业要求,为作物生长和产量提升提供一个良好的播种质量基础,基于单片机和无线通信技术等对免耕播种机播深监测系统进行研究,对各个生产部件的功能和选型进行分析,最后通过田间试验验证免耕播种机智能监测系统田间作业性能。研究结果可以为免耕播种机的设计及优化提供参考,对于进一步完善保护性耕作技术的发展提供技术支撑。  相似文献   

19.
玉米精密播种粒距在线监测与漏播预警系统研究   总被引:3,自引:0,他引:3  
针对玉米精密播种粒距偏差导致播量分布不均匀的问题,设计了玉米精密播种粒距在线监测与漏播预警系统。该系统主要由车载计算机、排种监测ECU及相关传感器组成,设计了上位机监测软件和基于移动平均粒距在线监测的下位机程序,通过监测玉米精密播种作业过程中的粒距及其误差,完成漏播预警。首先,设计并进行了排种计数监测精度试验,结果表明,在模拟车速3~12 km/h范围内,以1 km/h递增变化的10个车速下,系统对指夹式排种器和气吸式排种器的排种计数监测平均准确率分别为99.12%、99.71%,标准差分别为0.52%、0.44%,总体排种计数监测误差平均值小于1%。其次,基于高速摄像的播种粒距测量试验台进行了实验室环境下的粒距监测精度试验,采用指夹式排种器进行排种,目标粒距为25 cm,在车速3~12 km/h范围内,以1 km/h为间隔的10个车速下,系统对粒距监测误差绝对值的平均值为2.34 cm,标准差为2.56 cm。针对试验结果存在较多的随机异常点问题,采用移动平均滤波对监测粒距进行分析,得出粒距监测误差绝对值的平均值为0.79 cm,标准差为0.62 cm,单车速下对应的粒距监测误差绝对值的平均值最大为1.69 cm,标准差为0.23 cm,经移动平均滤波处理后,粒距误差异常点明显减少,系统粒距监测误差小于2.00 cm。最后,基于气吸式玉米精密播种机设计了试验样机,设置播种车速为5.49、8.49 km/h,目标粒距为25 cm,进行了田间播种粒距监测精度试验,分别采集350个连续的出苗粒距进行对比分析,结果表明,与出苗粒距移动平均值相比,系统粒距监测误差的平均值分别为1.84、2.22 cm,标准差分别为1.61、2.13 cm,粒距监测值曲线与出苗粒距移动平均值曲线的变化趋势基本相同。  相似文献   

20.
为进一步提升我国玉米精播机的综合作业效率,以性能优化提升作为研究目标,基于智能逆变技术的深度应用展开分析。以电控逆变处理与调速机制相融合为出发点,建立正确的电控模块逆变应用数学模型,通过控制分析与硬件优化,进行整机作业试验。结果表明:基于智能逆变技术应用的玉米精播机性能优化效果明显,排种精准率与播深合格率分别可提升至94.46%与94.05%,满足精量播种机的设计要求;同时,种子的重播率与漏播率可降低至3.83%与3.06%,整机作业运行稳定,各零部件指令执行协同性好,综合效率相对提升了5.88%,充分体现了智能逆变应用的准确性与适应性,可为类似农机播种装备优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号