首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Trichoderma asperellum SKT-1 is a microbial pesticide of seedborne diseases of rice. To investigate the mechanisms of disease suppression in SKT-1, the ability to induce systemic resistance by SKT-1, or its cell-free culture filtrate (CF), was tested using Arabidopsis thaliana Col-0 plants. RESULTS: Both SKT-1 and its CF elicit an induced systemic resistance against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 in Col-0 plants. Involvement of plant hormones in the induced resistance by SKT-1 and CF was assessed using Arabidopsis genotypes such as the jasmonic acid (JA)-resistant mutant jar1, the ethylene (ET)-resistant mutant etr1, the plant impaired in salicylic acid (SA) signalling transgenic NahG and the mutant npr1 impaired in NPR1 activity. In soil experiments using SKT-1, no significant disease suppression effect was observed in NahG transgenic plants or npr1 mutant plants. Expression levels of SA-inducible genes such as PR-1, PR-2 and PR-5 increased substantially in the leaves of Col-0 plants. Expression levels of JA/ET-induced genes such as PDF1.2a, PR-3, PR-4 and AtVsp1 were also induced, but the levels were not as high as for SA-inducible genes. In a hydroponic experiment using CF from SKT-1, all Arabidopsis genotypes showed an induced systemic resistance by CF and increased expression levels of JA/ET- and SA-inducible genes in leaves of CF-treated plants. CONCLUSION: The SA signalling pathway is important in inducing systemic resistance to colonisation by SKT-1, and both SA and JA/ET signalling pathways combine in the signalling of induced resistance by CF. These results indicate that the response of A. thaliana is different from that found in root treatments with barley grain inoculum and CF from SKT-1. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
The culture filtrate (CF) from the plant growth-promoting fungus Phoma sp. GS8-1 was found to induce systemic resistance in Arabidopsis thaliana against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 (Pst), and the underlying mechanism was studied. Roots of A. thaliana were treated with CF from GS8-1, and plants expressed a clear resistance to subsequent Pst infection; disease severity was reduced, and proliferation of pathogen was suppressed. Various mutants of A. thaliana were used to test whether the CF induced resistance through one of the known signaling pathways: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The CF was fully protective against Pst in Arabidopsis mutants jar1 and ein2 similar to wild-type plants. However, its efficacy was reduced in plants containing transgene NahG. Examination of systemic gene expression revealed that CF modulates the expression of SA-inducible PR-1, PR-2 and PR-5 genes, the JA/ET-inducible ChitB gene, and the ET-inducible Hel gene. Moreover, the expression of these genes was further enhanced upon subsequent stimulation after attack by Pst. Our data suggest that in addition to a partial requirement for SA, the signals JA and ET may also play a role in defense signaling in Arabidopsis.  相似文献   

3.
史佳琪  强胜  张裕 《植物保护学报》2023,50(5):1347-1357
为提升齐整小核菌Sclerotium rolfsii菌株SC64作为生物除草剂的应用潜力,解析植物对其的防御机制,通过比较6种生态型拟南芥Arabidopsis thaliana(Col-0、Ms-0、Gr-1、Se-0、Tu-0和Wa-1)被菌株SC64侵染后病理特征、茎秆木质素水平以及抗病相关基因表达的差异,筛选出抗性最高和抗性最弱的典型生态型拟南芥,通过施加0.1 mmol/L外源水杨酸来验证其在拟南芥防御菌株SC64侵染过程中对木质素代谢及病理的调节作用,并比较分析6种生态型拟南芥水杨酸上游调控通路基因MPK4启动子区域的甲基化差异。结果显示,6种生态拟南芥中Col-0的木质素化程度最高,被菌株SC64侵染时木质素代谢通路基因CAD4和PAL3表达上调最显著,与其抗病能力最强相吻合,而Ms-0的病理表型和抗病能力最弱。外源水杨酸预处理使具典型抗性的生态型拟南芥Col-0受菌株SC64侵染后发病程度加重,木质素化程度减弱,同时木质素代谢通路基因MYB46、LAC17、PAL3和CAD4被菌株SC64侵染后的表达上调程度均显著减弱。另外,6种生态型拟南芥MPK4基因启动子区域CHH...  相似文献   

4.
Bacterial wilt, caused by Ralstonia solanacearum, is a devastating soilborne disease in plants that limits the production of many crops worldwide. Although management of bacterial wilt has so far been unsuccessful, enhancing host resistance to the pathogen may be an effective control strategy. Recently, magnesium oxide (MgO) was found to induce defence responses against R. solanacearum in tomato plants. Here, the mechanisms underlying MgO-induced defence responses against R. solanacearum (MgO-i DARS) were investigated using Arabidopsis thaliana as a host plant. MgO-i DARS was confirmed in A. thaliana mutants deficient in jasmonic acid or ethylene signalling pathways as well as in the wildtype (Col-0) plants. In contrast, no MgO-i DARS was found in A. thaliana mutants deficient in the salicylic acid (SA) production (sid2-2) and signalling pathways (tga1-1 and npr-1). MgO treatment led to significant accumulation of SA in both roots and shoots of Col-0. The SA biosynthesis gene isochorismate synthase 1 (ICS1) was induced in roots and shoots of A. thaliana treated with MgO. An NADPH oxidase gene respiratory burst oxidase homolog D (AtRbohD) was up-regulated in both roots and shoots of Col-0 treated with MgO. No MgO-i DARS was observed in A. thaliana mutants deficient in AtRbohD. These results suggest that SA and RBOHD-mediated ROS are pivotal for MgO-i DARS in A. thaliana.  相似文献   

5.
Selected strains of rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant named rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resistance (SAR) in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Some rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface. In other cases, rhizobacteria trigger a different signalling pathway that does not require SA. The existence of a SA-independent ISR pathway has been demonstrated in Arabidopsis thaliana. In contrast to pathogen-induced SAR, ISR induced by Pseudomonas fluorescens WCS417r is independent of SA accumulation and pathogenesis-related (PR) gene activation but, instead, requires responsiveness to the plant hormones jasmonic acid (JA) and ethylene. Mutant analyses showed that ISR follows a novel signalling pathway in which components from the JA and ethylene response are successively engaged to trigger a defensive state that, like SAR, is controlled by the regulatory factor NPR1. Interestingly, simultaneous activation of both the JA/ethylene-dependent ISR pathway and the SA-dependent SAR pathway results in an enhanced level of protection. Thus combining both types of induced resistance provides an attractive tool for the improvement of disease control. This review focuses on the current status of our research on triggering, signalling, and expression of rhizobacteria-mediated ISR in Arabidopsis.  相似文献   

6.
Coronatine (COR) functions as a virulence factor in the interaction of Pseudomonas syringae pv. tomato strain DC3000 with tomato and Arabidopsis. COR consists of two moieties, coronafacic acid (CFA) and coronamic acid (CMA). Both COR and CFA function as structural and functional analogues of jasmonic acid (JA) and related signaling compounds such as methyl jasmonate (MeJA) and JA-isoleucine (JA-Ile). The precise function of COR and whether MeJA functions as an analogue of COR in disease development are not known. In this study, we analyzed whether the COR-defective mutant DB29, which is a CFA CMA mutant of DC3000, could be complemented for virulence via the exogenous application of COR, CFA, or MeJA. When tomato seedlings were inoculated with DB29 and supplemented with exogenous COR, the DB29 population multiplied in tomato seedlings and induced disease phenotypes similar to wild-type DC3000. Although the addition of exogenous MeJA or CFA enhanced the multiplication of DB29, wild-type disease phenotypes could not be restored with these compounds. Furthermore, inoculation of DB29 along with exogenous COR, but not MeJA or CFA, suppressed the expression of defense-related genes and increased the accumulation of reactive oxygen species, which are associated with severe chlorosis. Taken together, our results suggest that although COR targets the jasmonate pathway by mimicking JA, the function of COR in disease development is distinctly different from MeJA or CFA.  相似文献   

7.
为明确IDD家族IDD4基因在拟南芥Arabidopsis thaliana抵抗灰葡萄孢菌Botrytis cinerea侵染过程中的作用,通过统计病情指数检测拟南芥野生型(wild type,WT)植株、过表达植株IDD4-OE和缺失突变体idd4植株感染灰葡萄孢菌情况,利用组织染色检测叶片细胞死亡和H2O2的积累情况,采用实时荧光定量PCR(real-time quantitative-PT-PCR,qRT-PCR)技术分析灰葡萄孢菌肌动蛋白基因Bc. ACTIN在3种植株叶片中的表达情况,并施加0.1 mmol/L外源水杨酸(salicylic acid,SA)后测定IDD4-OE植株的病情指数。结果显示,不同株系对灰葡萄孢菌的抗性由高到低依次为idd4>WT>IDD4-OE,IDD4-OE植株中病原菌感染部位的寄主细胞死亡程度比idd4植株严重。染色结果表明,病原菌侵染拟南芥后4 h,接种部位已有H2O2积累。qRT-PCR反应结果显示,Bc. ACTINIDD4-OE中比在idd4植株中的表达水平更高,表明灰葡萄孢菌在IDD4-OE植株中的繁殖速率更快。对IDD4-OE植株外源施加SA后,其病情指数、Bc. ACTIN表达量与WT植株间均无显著差异,说明SA能将感病植株的抗性提高至WT植株的水平,表明IDD4作为负调控因子参与了拟南芥对灰葡萄孢菌的抗性调控,SA在其中发挥着重要作用。  相似文献   

8.
A necrotrophic pathogen, the tomato pathotype of Alternaria alternata (Aa) causes Alternaria stem canker on tomato. Its pathogenicity depends on the production of host-specific AAL-toxin. Pre-inoculation with nonpathogenic Aa or pretreatment an elicitor prepared from Aa reduced disease symptoms by the pathogen. Salicylic acid (SA)- and jasmonic acid (JA)-dependent defense responses in tomato are not involved in the resistance to the pathogen induced by nonpathogenic Aa. The results suggest that an alternative and unknown signaling pathway independent of SA- and JA-signaling might modulate the induced resistance by activating the expression of the multiple defense genes.  相似文献   

9.
为了解植物中特有的转录因子乙烯响应因子(ethylene responsive factor,ERF)在植物诱导抗虫反应中的作用,通过克隆1个水稻ERF转录因子基因OsERF7,并结合分子生物学、反向遗传学及生物测定,探究其在水稻防御褐飞虱Nilaparvata lugens和白背飞虱Sogatella furcifera为害过程中的作用。结果显示,机械损伤处理与褐飞虱产卵雌成虫为害均能在中后期诱导OsERF7的表达。沉默OsERF7能显著降低水稻上褐飞虱及白背飞虱卵的孵化率,并延长褐飞虱卵的发育历期;与野生型水稻相比,褐飞虱和白背飞虱在沉默突变体品系R1和R30上的卵孵化率分别只有野生型水稻上的62.5%~68.3%和68.0%~76.0%,褐飞虱卵的发育历期则延长0.37~0.45 d。沉默OsERF7不影响褐飞虱产卵雌成虫为害诱导的水稻防御相关信号分子—茉莉酸(JA)、水杨酸(SA)、乙烯(ET)和过氧化氢(H_2O_2)的含量。表明转录因子OsERF7作用于防御相关信号途径的下游,并且负调控水稻对褐飞虱和白背飞虱的抗性。  相似文献   

10.
11.
Plants express different defence mechanisms in response to pathogens. Understanding the recognition of pathogen‐associated molecular patterns (PAMPs) by specific receptors, and the role of endogenous signals such as AtPep1 that regulate expression of genes in Arabidopsis thaliana, has aided the understanding of the defence mechanisms in different species. The aim of this study was to identify possible orthologous sequences of AtPROPEPs in tomato (Solanum lycopersicum) and characterize its role in resistance to necrotrophic pathogens. The presence of an orthologue of the A. thaliana AtPROPEP1 gene in S. lycopersicum, SlPROPEP, by in silico analysis, is reported here. This has 96% identity with the C‐terminal region of a previously described potato peptide, another possible orthologue of AtPep1. A virus‐induced gene silencing (VIGS) system was employed to investigate the role of the SlPROPEP. Silencing of SlPROPEP in tomato made plants more susceptible to Pythium dissotocum; approximately 30% of SlPROPEP‐silenced plants showed stem constriction compared with 4% in control plants. Furthermore, quantification of P. dissotocum by qPCR revealed that the increase in symptom severity in SlPROPEP‐silenced plants was associated with a 15 times increase in growth of the pathogen compared to control plants. Silencing of SlPROPEP also resulted in decreased expression of genes involved in plant defence against pathogens, such as PR‐1, PR‐5, ERF1, LOX‐D and DEF2. These results suggest that SlPROPEP is involved in tomato resistance to P. dissotocum and probably acts as a pathogen‐associated molecular pattern through signalling pathways mediated by jasmonic acid/ethylene (JA/ET).  相似文献   

12.
为明确富亮氨酸重复类受体蛋白激酶(leucine-rich repeat receptor-like kinase,LRR-RLK)编码基因OsLRR-RLK18在调控水稻对褐飞虱Nilaparvata lugens防御中的作用及机理,以野生型水稻品系、OsLRR-RLK18基因敲除纯合水稻品系为研究对象,测定不同水稻品系的株高和根长、不同水稻品系对褐飞虱生物学参数的影响及褐飞虱为害后不同水稻品系中防御信号分子含量和防御化合物含量。结果显示,敲除OsLRR-RLK18基因后水稻株高和根长降低,褐飞虱为害后期诱导的茉莉酸、茉莉酸-异亮氨酸和脱落酸含量显著增加,但水稻组成型(未受褐飞虱为害)和为害早期的水杨酸和过氧化氢含量降低,引起水稻多种挥发物组分释放量增加,木质素、对香豆酰腐胺及樱桃苷、刺苞菊苷和大波斯菊苷3种类黄酮含量下降,最终导致褐飞虱卵孵化率和产卵量显著降低。表明OsLRR-RLK18基因参与了水稻对褐飞虱为害的防御反应,在调控水稻对褐飞虱的抗性中发挥着一定作用。  相似文献   

13.
为明确帚枝霉属Sarocladium内生生防真菌HND5菌株外泌激发子蛋白SbES的诱导辣椒抗病作用机理,通过构建SbES蛋白的毕赤酵母Pichia pastoris重组蛋白表达菌株,利用纯化后的SbES重组蛋白处理辣椒植株,检测辣椒对棒孢叶斑病的抗性,以及相关抗病反应与抗病基因表达的变化。结果表明,0.1 mg/mL SbES重组蛋白可有效诱导辣椒产生对棒孢叶斑病的抗性,可激发辣椒叶片活性氧爆发、微过敏反应和胼胝质积累等抗病反应;并能有效提高辣椒叶片中与活性氧爆发、过敏性反应、胼胝质合成和植保素合成等抗病反应相关基因,以及水杨酸、茉莉酸和乙烯信号传导关键基因的表达。推测帚枝霉属内生真菌激发子蛋白SbES可通过激活多种抗病信号传导途径来激发辣椒产生对棒孢叶斑病的抗性。  相似文献   

14.
15.
1-Octen-3-ol is a major volatile metabolite produced by mold fungi. When Arabidopsis plants were treated with 1-octen-3-ol, some defense genes that are turned on by wounding or ethylene/jasmonic acid signaling were induced. The treatment also enhanced resistance of the plant against Botrytis cinerea. When the induction of defense genes with 1-octen-3-ol was compared with that by volatile methyl jasmonate (MeJA) and methyl salicylate treatments, the induction pattern was similar to that caused by MeJA. Thus, Arabidopsis seems to recognize 1-octen-3-ol and consequently activates its defense response.  相似文献   

16.
Trichoderma spp. are common soil fungi used as biocontrol agents due to their capacity to produce antibiotics, induce systemic resistance in plants and parasitize phytopathogenic fungi of major agricultural importance. The present study investigated whether colonization of Arabidopsis thaliana seedlings by Trichoderma atroviride affected plant growth and development. Here it is shown that T. atroviride promotes growth in Arabidopsis. Moreover, T. atroviride produced indole compounds in liquid cultures. These results suggest that indoleacetic acid-related indoles (IAA-related indoles) produced by T. atroviride may have a stimulatory effect on plant growth. In addition, whether colonization of Arabidopsis roots by T. atroviride can induce systemic protection against foliar pathogens was tested. Arabidopsis roots inoculation with T. atroviride provided systemic protection to the leaves inoculated with bacterial and fungal pathogens. To investigate the possible pathway involved in the systemic resistance induced by T. atroviride, the expression profile of salicylic acid, jasmonic acid/ethylene, oxidative burst and camalexin related genes was assessed in Arabidopsis. T. atroviride induced an overlapped expression of defence-related genes of SA and JA/ET pathways, and of the gene involved in the synthesis of the antimicrobial phytoalexin, camalexin, both locally and systemically. This is the first report where colonization of Arabidopsis roots by T. atroviride induces the expression of SA and JA/ET pathways simultaneously to confer resistance against hemibiotrophic and necrotrophic phytopathogens. The beneficial effects induced by the inoculation of Arabidopsis roots with T. atroviride and the induction of the plant defence system suggest a molecular dialogue between these organisms.  相似文献   

17.
As plants mature it has been observed that some become more resistant to normally virulent pathogens. The ability to manifest the Age-Related Resistance (ARR) response in Arabidopsis to Pseudomonas syringae pathovars tomato (Pst) coincided with the transition to flowering in plants both delayed and accelerated in the transition to flowering. ARR was also associated with a change in PR-1 gene expression, such that young plants expressed PR-1 abundantly at 3 days post inoculation (dpi) while mature plants expressed much less. The Arabidopsis ARR response requires SA accumulation via isochorismate synthase (ICS1) [24]. ICS1 was expressed one dpi with virulent and avirulent Pst in both young and mature plants. The ARR response was also effective versus avirulent Pst providing an additional 4-fold limitation in bacterial growth. Arabidopsis ARR was found to be ineffective against two necrotrophs, Erwinia carotovora subspecies carotovora (bacterium) and Botrytis cinerea (fungus) and one obligate biotroph, Erysiphe cichoracearum (fungus). However, mature wild type, SA-deficient sid2 and NahG plants supported little growth of the obligate biotrophic oomycete, Peronospora parasitica. Therefore ARR to P. parasitica appears to be SA-independent, however the level of ARR resistance was somewhat reduced in these mutants in some experiments. Thus, there may be numerous defence pathways that contribute to adult plant resistance in Arabidopsis.  相似文献   

18.
19.
20.
The plant growth‐promoting fungus, Penicillium simplicissimum GP17‐2, was evaluated for its ability to induce resistance against Cucumber mosaic virus (CMV) in Arabidopsis thaliana and tobacco plants. Treatment with barley grain inoculum (BGI) of GP17‐2 significantly enhanced fresh weight, dry weight and leaf number of A. thaliana and tobacco plants 6 weeks after planting. Two weeks after CMV inoculation, all plants treated with BGI of GP17‐2 or its culture filtrate (CF) showed a significant reduction in disease severity compared with non‐treated control plants, which exhibited severe mosaic symptoms by the end of the experiment. The enzyme‐linked immunosorbent assay (ELISA) demonstrated that CMV accumulation was significantly reduced in plants treated with GP17‐2 or its CF relative to control plants. Based on RT‐PCR, plants treated with GP17‐2 (BGI or CF) also exhibited increased expression of regulatory and defence genes involved in the SA and JA/ET signalling pathways. These results suggested that multiple defence pathways in A. thaliana and tobacco were involved in GP17‐2‐mediated resistance to CMV, although neither the transgenic NahG line, nor the npr1, jar1 or ein3 mutants disrupted the response in A. thaliana. This is the first report to demonstrate the induction of systemic resistance against CMV by GP17‐2 or its CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号