首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
Nor98 is an atypical scrapie strain characterized by a molecular pattern and brain distribution of the pathological prion protein (PrPSc) different from classical scrapie. In Italy, 69 atypical cases have been identified so far and all were characterized as Nor98 strain. In this paper we report an unusual case in a sheep which showed immunohistochemical and molecular features of PrPSc different from the other atypical cases. The sheep was from an outbreak where the index and the other four cases were affected by classical scrapie. Histopathological, immunohistochemical and Western blot analyses on the brain of the unusual case revealed the simultaneous presence of pathological features characteristic of Nor98 and classical scrapie. Interestingly, the prevalent disease phenotype in the brainstem was classical scrapie-like, while in the cerebral cortex and cerebellum the Nor98 phenotype was dominant. The sub-mandibular lymph node was positive and showed a PrPSc molecular pattern referable to classical scrapie. The PrP genotype was AL141RQ/AF141RQ. Taken together, the occurrence of classical scrapie in the outbreak, the PrP genotype, the involvement of different cellular targets in the brain and the pathological and molecular PrPSc features observed suggest that this unusual case may result from the co-existence of Nor98 and classical scrapie.  相似文献   

2.
The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. We compared the disease phenotype of sheep-adapted CWD to classical scrapie in sheep. We inoculated sheep intracranially with brain homogenate from first-passage mule deer CWD in sheep (sCWDmd). The attack rate in second-passage sheep was 100% (12 of 12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.  相似文献   

3.
Chronic wasting disease (CWD) is classified as a transmissible spongiform encephalopathy or prion disease that affects cervids. CWD has been reported in 15 US states, two Canadian provinces, and in imported elk on several farms in Korea. This study was conducted to examine the molecular biological and pathogenic characteristics of a CWD-associated prion isolated in Korea. The epidemiological origin of this pathogen was also determined. Homozygous TgElk mice were infected with a CWD-affected elk brain pool prepared from the brain of an imported Canadian elk. We measured the incubation time of the pathogen, neuropathological changes by immunohistochemical staining, the pattern(s) of scrapie prion protein (PrPSc) deposition, and PrPSc protein profiles by Western blotting. We found that TgElk mice infected with brain homogenate from the elk suffering from CWD showed incubation times, vacuolar degeneration, and PrPSc accumulation similar to those previously reported in the literature. Our results suggest that homozygous TgElk mice efficiently transmit CWD with short incubation times and that this animal can serve a valuable research model and reliable in vivo diagnostic tool.  相似文献   

4.
5.
Scrapie is diagnosed antemortem in sheep by detecting misfolded isoforms of prion protein (PrPSc) in lymphoid follicles of the rectal mucosa and nictitating membranes. Assay sensitivity is limited if (a) the biopsy is collected early during disease development, (b) an insufficient number of follicles is collected, or (c) peripheral accumulation of PrPSc is reduced or delayed. A blood test would be convenient for mass live animal scrapie testing. Currently approved techniques, however, have their own detection limits. Novel detection methods may soon offer a non-animal-based, rapid platform with detection sensitivities that rival the prion bioassay. In anticipation, we sought to determine if diseased animals could be routinely identified with a bioassay using B lymphocytes isolated from blood sample volumes commonly collected for diagnostic purposes in small ruminants. Scrapie transmission was detected in five of six recipient lambs intravenously transfused with B lymphocytes isolated from 5~10 mL of blood from a naturally scrapie-infected sheep. Additionally, scrapie transmission was observed in 18 ovinized transgenic Tg338 mice intracerebrally inoculated with B lymphocytes isolated from 5~10 mL of blood from two naturally scrapie-infected sheep. Based on our findings, we anticipate that these blood sample volumes should be of diagnostic value.  相似文献   

6.
Ovine scrapie can be transmitted via environmental reservoirs. A pool of ovine scrapie isolates were incubated on soil for one day or thirteen months and eluted prion was used to challenge tg338 mice transgenic for ovine PrP. After one-day incubation on soil, two PrPSc phenotypes were present: G338 or Apl338ii. Thirteen months later some divergent PrPSc phenotypes were seen: a mixture of Apl338ii with either G338 or P338, and a completely novel PrPSc deposition, designated Cag338. The data show that prolonged ageing of scrapie prions within an environmental matrix may result in changes in the dominant PrPSc biological/biochemical properties.  相似文献   

7.
Detection of the scrapie-associated protease-resistant prion protein (PrPres) in sheep brains in the early phase after intracerebral inoculation of the scrapie agent has not been documented. Fourteen 4-mo-old, genetically susceptible lambs (QQ homozygous at codon 171 of the PrP gene) were obtained for this study. Twelve lambs were inoculated intracerebrally with a brain suspension from sheep naturally affected with scrapie, and 2 served as uninoculated controls. Two inoculated animals were euthanized at each of 6 times postinoculation (1 h to 6 wk), and their brains were collected for histopathological study, for detection of PrPres by the Western blot technique and an immunohistochemical (IHC) method, and for the detection of scrapie-associated fibrils (SAF) by negatively stained electron microscopy (EM). Microscopic lesions associated with introduction of the inoculum were seen in the brains of inoculated animals at all 6 times. However, both the Western blot and IHC techniques did not detect PrPres after the initial 3 d postinoculation, nor did EM detect SAF in any of the samples. From these findings, it is presumed that until host amplification has occurred, the concentration of PrPres in inoculum is insufficient for detection by currently available techniques.  相似文献   

8.
Meadow voles (Microtus pennsylvanicus) are permissive to chronic wasting disease (CWD) infection, but their susceptibility to other transmissible spongiform encephalopathies (TSEs) is poorly characterized. In this initial study, we intracerebrally challenged 6 meadow voles with 2 isolates of sheep scrapie. Three meadow voles acquired a TSE after the scrapie challenge and an extended incubation period. The glycoform profile of proteinase K-resistant prion protein (PrPres) in scrapie-sick voles remained similar to the sheep inocula, but differed from that of voles clinically affected by CWD. Vacuolization patterns and disease-associated prion protein (PrPSc) deposition were generally similar in all scrapie-affected voles, except in the hippocampus, where PrPSc staining varied markedly among the animals. Our results demonstrate that meadow voles can acquire a TSE after intracerebral scrapie challenge and that this species could therefore prove useful for characterizing scrapie isolates.  相似文献   

9.
When scrapie agent is exposed to partially inactivating autoclave cycles, the fraction of infectivity that survives remains thermostable during relatively long periods of autoclaving. This resistant subpopulation can also be differentiated from the main population by its prolonged incubation periods in assay animals, compared with control material. Stabilisation of this subpopulation may occur through the smearing and drying of infected tissue that can occur prior to autoclaving, in which the disease-specific form of PrP protein (PrPSc) could become rapidly heat-fixed. This may paradoxically be what protects this fraction of PrPSc from further inactivation during autoclaving. Data are presented showing that the thermostability acquired by the resistant subpopulation is a stable characteristic; autoclaving for a second time results in very little further loss of infectivity. These observations suggest that inactivation procedures that do not involve rapid and effective fixation of PrPSc may be better candidates for dealing effectively with scrapie-like agents.  相似文献   

10.
There are few reports on the pathogenesis of scrapie (Sc) and Visna/maedi virus (VMV) coinfections. The aim of this work was to study in vivo as well as post mortem both diseases in 91 sheep. Diagnosis of Sc and VMV infections allowed the distribution of animals into five groups according to the presence (+) or absence (−) of infection by Sc and VMV: Sc−/VMV−, Sc−/VMV+, Sc+/VMV− and Sc+/VMV+. The latter was divided into two subgroups, with and without VMV-induced lymphoid follicle hyperplasia (LFH), respectively. In both the lung and mammary gland, PrPSc deposits were found in the germinal center of hyperplasic lymphoid follicles in the subgroup of Sc+/VMV+ having VMV-induced LFH. This detection was always associated with (and likely preceded by) PrPSc observation in the corresponding lymph nodes. No PrPSc was found in other VMV-associated lesions. Animals suffering from scrapie had a statistically significantly lower mean age than the scrapie free animals at the time of death, with no apparent VMV influence. ARQ/ARQ genotype was the most abundant among the 91 ewes and the most frequent in scrapie-affected sheep. VMV infection does not seem to influence the scrapie risk group distribution among animals from the five groups established in this work. Altogether, these data indicate that certain VMV-induced lesions can favor PrPSc deposits in Sc non-target organs such as the lung and the mammary gland, making this coinfection an interesting field that warrants further research for a better comprehension of the pathogenesis of both diseases.  相似文献   

11.
A feature of transmissible spongiform encephalopathies is the accumulation of infectious prion proteins (PrPSc), which are formed by the conversion of physiological prion proteins (PrPC). As PrPC, which is modified posttranslationally with various types of glycoproteins, serves as the substrates for PrPSc conversion, various PrPC subtypes may play a role in the formation of PrPSc and species-specific transmission; the cattle disease BSE is transmissible naturally to humans, but the sheep disease scrapie is not. To reveal new mechanisms modulating prion conversion, we analyzed the PrPC profiles by determining the differential PrPC protein solubilities in the anionic and nonionic detergents N-lauroylsarcosine, N-octyl-β-d-glucopyranoside, CHAPS and deoxycholic acid. We compared the resulting solubility profiles of human PrPC with the solubility profiles of PrPC from sheep and cattle. The PrPC subtypes were differentially soluble. However, non-glycosylated PrPC from cattle and human was found explicitly in the insoluble fraction, while non-glycosylated ovine PrPC was detected in the soluble fraction. These findings indicate the existence of low-solubility PrPC phenotypes in cattle and humans.  相似文献   

12.
Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.  相似文献   

13.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt–Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrPSc), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrPC into PrPSc are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrPC into PrPSc and where the most drastic structural changes take place. Direct interactions between PrPC molecules and/or PrPSc are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

14.
It has long been established that the sheep Prnp genotype influences the susceptibility to scrapie, and some studies suggest that it can also determine several aspects of the disease phenotype. Other studies, however, indicate that the source of infection may also play a role in such phenotype. To address this question an experiment was set up in which either of two different natural scrapie sources, AAS from AA136 Suffolk and VVC from VV136 Cheviot sheep, were inoculated into AA136, VA136 and VV136 sheep recipients (n = 52). The immunohistochemical (IHC) profile of disease-associated PrP (PrPd) accumulation in the brain of recipient sheep was highly consistent upon codon 136 homologous and semi-homologous transmission, but could be either similar to or different from those of the inoculum donors. In contrast, the IHC profiles were highly variable upon heterologous transmission (VVC to AA136 and AAS to VV136). Furthermore, sheep of the same Prnp genotype could exhibit different survival times and PrPd profiles depending on the source of infection, and a correlation was observed between IHC and Western blot profiles. It was found that additional polymorphisms at codons 112 or 141 of AA136 recipients resulted in a delayed appearance of clinical disease or even in protection from infection. The results of this study strongly suggest that the scrapie phenotype in sheep results from a complex interaction between source, donor and recipient factors, and that the Prnp genotype of the recipient sheep does not explain the variability observed upon codon 136 heterologous transmissions, arguing for other genetic factors to be involved.  相似文献   

15.
To examine the sensitivity of a commercially available bovine spongiform encephalopathy (BSE) kit (NippIBL) for the detection of ovine scrapie, 50 scrapie‐positive ovine samples from the UK, and 54 scrapie‐negative ovine samples from Japan were obtain and tested using this kit. The sensitivity and specificity of NippIBL for ovine samples were 96% and 100%, respectively. The detection limit of the abnormal isoform of prion protein (PrPSc) of NippIBL was examined using diluted scrapie‐positive samples. The sensitivity of NippIBL to ovine scrapie was 3–10 times superior to that of another commercial BSE diagnosis kit. Thus, the NippIBL kit proved more effective for the detection of ovine scrapie.  相似文献   

16.
17.
Recently we have described the distribution of bovine spongiform encephalopathy (BSE) infectivity and/or PrPSc in Peyer’s patches (PP) of the small intestine of orally BSE infected cattle. In this follow-up study additional jejunal and ileal PP’s and ileocaecal-junction tissue samples from 1, 4, and 24 months post infection (mpi) were examined by mouse (Tgbov XV) bioassay. Infectivity was demonstrated in ileal PP’s 4 mpi and the distribution/extent of infectivity at 24 mpi was comparable to those seen at earlier time points, revealing no indication for a decline/clearance. These data are relevant for the definition of Specified Risk Materials in the context of the TSE legislation worldwide.  相似文献   

18.
L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrPSc) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrPSc of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrPSc glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice.  相似文献   

19.
Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrPres), the pathological form of the cellular prion protein (PrPC). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron‐like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrPC and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs.  相似文献   

20.
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号