首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrPres), the pathological form of the cellular prion protein (PrPC). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron‐like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrPC and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs.  相似文献   

2.
A genuine biophysical method, Fourier transform-infrared (FT-IR) spectroscopy has become a versatile research tool in biochemistry and biomedicine. Topical applications in microbiology and prion research are impressive illustrations of the vigorous evolution of the technique. FT-IR spectroscopy has established itself as a powerful method for the rapid differentiation and identification of microorganisms, thereby contributing to both clinical medicine and the prevention of bioterrorism. It has also led to considerable progress in various other fields of basic research, not least in prion sciences. In this field, FT-IR spectroscopy has been increasingly applied as a tool for elucidating structural features of the pathological prion protein, and also to study the molecular changes induced by prions in neuronal tissue and blood. This article sets out to give a review of current examples of the analytical potential of FT-IR spectroscopy in microbiology and prion research.  相似文献   

3.
The prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed most abundantly in the brain, but has also been detected in other non-neuronal tissues as diverse as lymphoid cells, lung, heart, kidney, gastrointestinal tract, muscle, and mammary glands. Cell biological studies of PrP contribute to our understanding of PrP(C) function. Like other membrane proteins, PrP(C) is post-translationally processed in the endoplasmic reticulum and Golgi on its way to the cell surface after synthesis. Cell surface PrP(C) constitutively cycles between the plasma membrane and early endosomes via a clathrin-dependent mechanism, a pathway consistent with a suggested role for PrP(C) in cellular trafficking of copper ions. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, PrP(C) is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocytes. Furthermore, antibody cross-linking of surface PrP(C) modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signaling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Recent work has suggested that PrP(C) is required for self-renewal of haematopoietic stem cells. PrP(C) is highly expressed in the central nervous system, and since this is the major site of prion pathology, most interest has focused on defining the role of PrP(C) in neurones. Although PrP(-/-) mice have a grossly normal neurological phenotype, even when neuronal PrP(C) is knocked out postnatally, they do have subtle abnormalities in synaptic transmission, hippocampal morphology, circadian rhythms, and cognition and seizure threshold. Other postulated neuronal roles for PrP(C) include copper-binding, as an anti- and conversely, pro-apoptotic protein, as a signaling molecule, and in supporting neuronal morphology and adhesion. The prion protein may also function as a metal binding protein such as copper, yielding cellular antioxidant capacity suggesting a role in the oxidative stress homeostasis. Finally, recent observations on the role of PrP(C) in long-term memory open a challenging field.  相似文献   

4.
Synthetic prions     
The prion theory postulates that prions are novel infectious agents that are composed largely, if not entirely, of abnormally folded host-encoded prion proteins. However, the existence of different prion strains is enigma, if these novel infectious agents lack a genetic element, such as a nucleic acid. The best proof for this 'protein-only' concept would be the in vitro generation of prions from synthetic sources. Indeed, a substantial body of evidence has meanwhile been accumulated in favour of this postulate. This mini review recapitulates all relevant studies and experimental data on the generation of synthetic prions.  相似文献   

5.
Synthetic Prions     
The prion theory postulates that prions are novel infectious agents that are composed largely, if not entirely, of abnormally folded host‐encoded prion proteins. However, the existence of different prion strains is enigma, if these novel infectious agents lack a genetic element, such as a nucleic acid. The best proof for this ‘protein‐only’ concept would be the in vitro generation of prions from synthetic sources. Indeed, a substantial body of evidence has meanwhile been accumulated in favour of this postulate. This mini review recapitulates all relevant studies and experimental data on the generation of synthetic prions.  相似文献   

6.
After prion infection, an abnormal isoform of prion protein (PrP(Sc)) converts the cellular isoform of prion protein (PrP(C)) into PrP(Sc). PrP(C)-to-PrP(Sc) conversion leads to PrP(Sc) accumulation and PrP(C) deficiency, contributing etiologically to induction of prion diseases. Presently, most of the diagnostic methods for prion diseases are dependent on PrP(Sc) detection. Highly sensitive/accurate specific detection of PrP(Sc) in many different samples is a prerequisite for attempts to develop reliable detection methods. Towards this goal, several methods have recently been developed to facilitate sensitive and precise detection of PrP(Sc), namely, protein misfolding cyclic amplification, conformation-dependent immunoassay, dissociation-enhanced lanthanide fluorescent immunoassay, capillary gel electrophoresis, fluorescence correlation spectroscopy, flow microbead immunoassay, etc. Additionally, functionally relevant prion-susceptible cell culture models that recognize the complexity of the mechanisms of prion infection have also been pursued, not only in relation to diagnosis, but also in relation to prion biology. Prion protein (PrP) gene-deficient neuronal cell lines that can clearly elucidate PrP(C) functions would contribute to understanding of the prion infection mechanism. In this review, we describe the trend in recent development of diagnostic methods and cell culture models for prion diseases and their potential applications in prion biology.  相似文献   

7.
Generation of genuine prion infectivity by serial PMCA   总被引:2,自引:0,他引:2  
Prions are the causative infectious agents of transmissible spongiform encephalopathies (TSEs). They are thought to arise from misfolding and aggregation of the prion protein (PrP). In serial transmission protein misfolding cyclic amplification (sPMCA) experiments, newly formed misfolded and proteinase K-resistant PrP (PrPres) catalysed the structural conversion of cellular prion protein (PrP(C)) as efficiently as PrP(Sc) from the brain of scrapie-infected (263K) hamsters confirming an autocatalytic misfolding cascade as postulated by the prion hypothesis. However, the fact that PrPres generated in vitro was associated with approximately 10 times less infectivity than an equivalent quantity of brain-derived PrP(Sc) casts doubt on the "protein-only" hypothesis of prion propagation and backs theories that suggest there are additional molecular species of infectious PrP or other agent-associated factors. By combining sPMCA with prion delivery on suitable carrier particles we were able to resolve the apparent discrepancy between the amount of PrPres and infectivity which we were then able to relate to differences in the size distribution of PrP aggregates and consecutive differences in regard to biological clearance. These findings demonstrate that we have designed an experimental set-up yielding in vitro generated prions that are indistinguishable from prions isolated from scrapie-infected hamster brain in terms of proteinase K resistance, autocatalytic conversion activity, and - most notably - specific biological infectivity.  相似文献   

8.
ABSTRACT: Classical scrapie is a naturally transmitted prion disease of sheep and goats. Contaminated environments may contribute to the spread of disease and evidence from animal models has implicated urine, blood, saliva, placenta and faeces as possible sources of the infection. Here we sought to determine whether sheep naturally infected with classical scrapie shed prions in their faeces. We used serial protein misfolding cyclic amplification (sPMCA) along with two extraction methods to examine faeces from sheep during both the clinical and preclinical phases of the disease and showed amplification of PrPSc in 7 of 15 and 14 of 14 sheep respectively. However PrPSc was not amplified from the faeces of 25 sheep not exposed to scrapie. These data represent the first demonstration of prion shedding in faeces from a naturally infected host and thus a likely source of prion contamination in the environment.  相似文献   

9.
Faeces from infected animals have been suggested as a potential source of contamination and transmission of prion diseases in the environment. This work describes the development of a procedure for the detection of PrP(res) in stools which is based on a detergent-based extraction and immunoprecipitation (IP). The procedure was evaluated by analyzing TSE-spiked sheep and mice faeces, and proved to be specific for PrP(res) with sensitivities of 5-10mug of infected brain tissue. In order to analyze the shedding of prions, we studied stools from orally inoculated mice over 4-days post-inoculation and also stools from terminally sick scrapie-infected mice. PrP(res) was only detected in stools shortly after the oral ingestion of TSE agents. The procedure described could be a useful tool for studying the excretion of prions and for evaluating potential environmental contamination by prions.  相似文献   

10.
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.  相似文献   

11.
Alpha-Hemoglobin stabilizing protein (AHSP) functions as the erythroid-specific molecular chaperon for alpha-globin. AHSP gene expression has been reported to be downregulated in hematopoietic tissues of animals suffering from prion diseases though the mechanism remains to be clarified. Herein, we demonstrate that MELhipod8 cells, a subclone of murine erythroleukemia (MEL) cells, have prion protein (PrPc) on the cell surface and have highly inducible expression of the AHSP and alpha- and beta-globin genes, resembling the expression pattern of the PrP and AHSP genes in bipotential erythroid- and megakaryocyte-lineage cells followed by erythroid differentiation in normal erythropoiesis. Moreover, MELhipod8 cells exhibit greater effective erythroid differentiation with a population of hemoglobinized normoblast-like cells than that observed for the parental MEL cells. These findings suggest that MELhipod8 cells could provide a mechanism for downregulation of the AHSP gene in prion diseases.  相似文献   

12.
The transmissible spongiform encephalopathies (TSEs) represent an emerging group of diseases that have been labeled as "prion diseases" because of the recent characterization of the infectious agent. TSEs are caused by prions, which induce neurodegenerative fatal diseases in humans and animals. Some TSEs (scrapie and kuru), have existed in both animals and humans for a very long time, whereas others such as bovine spongiform encephalopathy and variant Creutzfeld-Jakob disease have either recently emerged or are more thoroughly described and recognized. It is obvious that the medical community will be forced to consider these diseases in humans and animals for the future. This article offers a short review of the TSEs of immediate concern to zoo and wildlife veterinarians and wildlife biologists and suggests risk management strategies for the prevention of these diseases, with special focus on chronic wasting disease of cervids in North America.  相似文献   

13.
Prion diseases are characterised by neuronal loss, vacuolation (spongiosis), reactive astrocytosis, microgliosis and in most cases by the accumulation in the central nervous system of the abnormal prion protein, named PrP(Sc). In this review on the "cellular pathogenesis in prion diseases", we have chosen to highlight the main mechanisms underlying the impact of PrP(C)/PrP(Sc) on neurons: the neuronal dysfunction, the neuronal cell death and its relation with PrP(Sc) accumulation, as well as the role of PrP(Sc) in the microglial and astrocytic reaction.  相似文献   

14.
In view of the first 64 BSE cases (date: 11.5.01) in German cattle herds an overview on TSE and their similarities and differences regarding clinic, pathogenesis and pathology is given. The mechanism of the unconventional agent, an infectious protein (prion), is explained based on the prion model of Stanley Prusiner. The knowledge on transmission, incubation time, host specificity as well as resistance and immunity drawn from experimentally infected animals is discussed. Thus, after oral infection prions are transported by lymphocytes from the stomach-intestinal tract to the spleen. The way to the CNS is still unknown. The presumption for crossing the species barrier is twofold: first the prions of different species have to be biochemically homologous and a genetical disposition has to exist. This is the case for BSE and the new variant of Creutzfeldt-Jakob-Disease (vCJD). There is evidence that in Great Britain so far 97 (date: 30.3.01) young people acquired vCJD due to consumption of food that contained bovine risk material. Regarding the infectious prion dosis brain, spinal cord and lymphoid tissues are regarded to be most dangerous. The principle of the BSE-test, its evidence as well as steps for prevention and control of BSE are presented.  相似文献   

15.
Transmissible spongiform encephalopathies (TSEs) or prion diseases develop as central nervous system (CNS) disorders characterized by extremely long incubation periods. Although TSEs do not go along with inflammatory infiltrates and/or antibody production against the prion protein (PrP(Sc)), the immune system plays an important role in pathogenesis as long as different lymphoid organs (Peyer's patches, lymph nodes and spleen) may facilitate the accumulation and further spread of prions after peripheral exposure. In this work we investigated the changes in lymphoid and dendritic cell (DC) populations as well as the implications of different cytokines during disease progression after experimental oral inoculation of prions in a transgenic mouse model. At different days post-inoculation (dpi), T and B lymphocytes and DC populations from lymphoid organs, blood and brain were analyzed by flow cytometry and immunohistochemistry. Besides time related variations in lymphoid cell numbers due to the aging of the animals significant changes related with the infection were found in mesenteric lymph nodes, peripheral blood leukocytes (PBLs) as well as in spleen, affecting the CD4/CD8 ratio. In contrast, little or no variation was detected in Peyer's Patches or in thymus either associated with aging or the infection status. At individual time points significant differences between infected and control mice were seen in the CD8, CD4 and DC populations, with less evidence of differences in the B cell compartment. Finally, a pro-inflammatory phenotype occurred at early times in the spleen, where the levels of lymphotoxin-beta mRNA were found augmented with respect to controls. Altogether, these results suggest that normal regulation of lymphocyte populations becomes altered along the progression of a prion infection.  相似文献   

16.
Epileptic seizures can lead to various reactions in the brain, ranging from neuronal necrosis and glial cell activation to focal structural disorganization. Furthermore, increased hippocampal neurogenesis has been documented in rodent models of acute convulsions. This is a report of hippocampal neurogenesis in a dog with spontaneous epileptic seizures. A 16-week-old epileptic German Shepherd Dog had marked neuronal cell proliferation (up to 5 mitotic figures per high-power field and increased immunohistochemical expression of proliferative cell nuclear antigen) in the dentate gyrus accompanied by microglial and astroglial activation. Some granule cells expressed doublecortin, a marker of immature neurons; mitotically active cells expressed neuronal nuclear antigen. No mitotic figures were found in the brain of age-matched control dogs. Whether increased neurogenesis represents a general reaction pattern of young epileptic dogs should be investigated.  相似文献   

17.
朊蛋白(prion)是传染性海绵状脑病(transmissible spongiform encephalopathy,TSE)的唯一致病因子。在细胞内存在两种形式的朊蛋白,即正常形式PrP~c和致病形式PrP~(sc)(PrP~(res))。PrP~(sc)的出现是TSE发生的关键因素。本文阐述了朊蛋白的发现与意义及其在物种内、物种间的致病机理。  相似文献   

18.
Until today most prion strains can only be propagated and the infectivity content assayed by experimentally challenging conventional or transgenic animals. Robust cell culture systems are not available for any of the natural and only for a few of the experimental prion strains. Moreover, the pathogenesis of different transmissible spongiform encephalopathies (TSE) can be analysed systematically by using experimentally infected animals. While, in the beginning, animals belonging to the natural host species were used, more and more rodent model species have been established, mostly due to practical reasons. Nowadays, most of these experiments are performed using highly susceptible transgenic mouse lines expressing cellular prion proteins, PrP, from a variety of species like cattle, sheep, goat, cervidae, elk, hamster, mouse, mink, pig, and man. In addition, transgenic mice carrying specific mutations or polymorphisms have helped to understand the molecular pathomechanisms of prion diseases. Transgenic mouse models have been utilised to investigate the physiological role of PrP(C), molecular aspects of species barrier effects, the cell specificity of the prion propagation, the role of the PrP glycosylation, the mechanisms of the prion spread, the neuropathological roles of PrP(C) and of its abnormal isoform PrP(D) (D for disease) as well as the function of PrP Doppel. Transgenic mouse models have also been used for mapping of PrP regions involved in or required for the PrP conversion and prion replication as well as for modelling of familial forms of human prion diseases.  相似文献   

19.
传染性海绵状脑病(transmissible spongiform encephalopathies,TSEs)是由朊病毒引起的人和多种哺乳动物以神经退行性变化为主要特征的一种慢性消耗性传染病,也称作朊病毒病;其是由体内正常细胞表面的PrPC转变成PrPSc蛋白所导致。但PrPSc主要在脑内表达,在其他组织表达量很低,因此快捷准确的诊断方法对于该病有重要意义。作者重点介绍以朊病毒的致病特点为依据建立的检测方法,便于对该疾病的早期诊断、预防以及食品安全检测提供帮助,保障畜牧业的有序发展以及人类的健康。  相似文献   

20.
The influence of a complex microflora residing in the gastrointestinal tract of cattle on the prion protein plays a crucial role with respect to early pathogenesis and the potential infectivity of faeces resulting in contamination of the environment. It is unknown whether infectious prion proteins, considered to be very stable, are inactivated by microbial processes in the gastrointestinal tract of animals during digestion. In our previous study it was shown that the scrapie-associated prion protein was degraded by ruminal and colonic microbiota of cattle, as indicated by a loss of anti-prion antibody 3F4 immunoreactivity in Western blot. Subsequently, in this study hamster bioassays with the pre-treated samples were performed. Although the PrP(Sc) signal was reduced up to immunochemically undetectable levels within 40 h of pre-treatment, significant residual prion infectivity was retained after degradation of infected hamster brain through the gastrointestinal microflora of cattle. The data presented here show that the loss of anti-prion antibody 3F4 immunoreactivity is obviously not correlated with a biological inactivation of PrP(Sc). These results highlight the deficiency of using Western blot in transmissible spongiform encephalopathies inactivation assessment studies and, additionally, point to the possibility of environmental contamination with faeces containing PrP(Sc) following an oral ingestion of prions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号