首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>反应器细胞培养技术是以反应器悬浮培养动物细胞生产或研制生物制品的一种通用的平台技术,可广泛地用于生产单抗、人用或兽用疫苗等生物制品。1962年Capstile成功地大规模悬浮培养BHK-21细胞,1967年VanWezel成功应用微载体培养贴壁动物细胞,标志着反应器培养动物细胞技术的起步。  相似文献   

2.
近年来,动物细胞悬浮培养技术备受关注,该技术已广泛应用于各类生物制品及兽用疫苗的研究和生产过程中。细胞悬浮培养生产兽用疫苗既能降低成本, 也能提高产品质量。以生物反应器技术为基础的细胞悬浮培养技术平台正逐步被建立起来且日趋成熟,成为推动兽用疫苗生产快速发展的主要动力。文章介绍了细胞悬浮培养技术,并就该技术在兽用疫苗生产中的应用进行了论述。  相似文献   

3.
细胞悬浮培养是利用生物反应器大规模培养动物细胞生产生物制品的核心技术,是当前国际上生物制品生产的主流模式。作者就微载体的发展、各种生物反应器的基本原理及应用状况、悬浮培养技术存在问题、中国悬浮培养技术产业化存在的挑战和展望等作一综述。  相似文献   

4.
传统的疫苗生产方法受很多因素的限制,为了适应扩大化工业生产的需要,细胞悬浮培养技术已经在工业生产上日益成熟,本文就此项技术中关于悬浮培养的细胞性能、细胞悬浮培养驯化的方法、悬浮培养细胞培养基的优化、生物反应器种类等要素进行概述,并对此技术在疫苗生产中的应用作了展望。  相似文献   

5.
为了实现非洲绿猴肾细胞(Vero细胞)在生物反应器中的大规模生产,并使其可在以Vero细胞为细胞基质的病毒疫苗生产中应用,试验采用控制变量法对Vero细胞微载体悬浮培养相关参数进行逐一摸索研究。结果表明:在3~5 g微载体、1 L培养体系中,使用DMEM培养基、血清浓度为8%~10%、初始接种密度为30~50个/球,采用灌流式培养方式可使细胞达到最佳状态。说明成功建立了Vero细胞生物反应器的微载体悬浮培养工艺。  相似文献   

6.
为实现伪狂犬病病毒(PRV)的大规模生产,本研究应用Cephodex微载体悬浮培养BHK-21细胞,通过对培养工艺的研究,初步实现了病毒抗原的高效生产。整个过程采用流加方式和动物细胞微载体培养技术,在细胞反应器中进行BHK-21高密度培养和PRV的高滴度增殖。结果表明,微载体工艺比转瓶培养法获得的病毒液滴度高约100.525TCID50/0.1 m L。因此,应用Cephodex微载体悬浮培养BHK-21细胞在伪狂犬病疫苗规模化生产中具有重要的应用价值。  相似文献   

7.
悬浮培养工艺与转瓶培养工艺的比较分析   总被引:2,自引:1,他引:1  
采用反应器全悬浮培养BHK21细胞生产口蹄疫病毒与微载体悬浮培养Vero细胞生产狂犬病毒分别与相应的转瓶培养工艺生产案例对比分析,比较悬浮培养工艺与转瓶培养工艺的生产效益。分析显示,与转瓶培养工艺相比,反应器悬浮培养工艺获得的细胞密度、病毒效价、产品的产量和质量明显提高,生产时的能耗和劳动力需求明显降低。结果表明悬浮培养工艺的生产效益明显高于转瓶培养工艺,适宜于国内生物制品工业化生产的升级换代。  相似文献   

8.
研究表明,PCV2仅在PK15等少数哺乳动物细胞上增殖,但由于PCV2毒力弱,且不产生细胞病变,获得高滴度病毒难度较大~([1])。因此,PCV2的培养滴度高低已成为制约现有疫苗质量的关键瓶颈之一。为建立在生物反应器内微载体逐级放大培养PK-15细胞和增殖PCV2技术,本研究以德国Sartorius14 L生物反应器微载体悬浮培养PK-15细胞,对PK-15细胞初始接种密度、搅拌转速、微载体浓度、PCV2接毒时间、接毒剂量、收毒时间等工艺参数进行了摸索和优化~([2-3])。结果表明:3 g/L的微载体和60 r/min的搅拌转速下,采用0.5×10~6cells/mL的初始接种密度操作工艺可获得最佳PK-15细胞生长效能。细胞生长后6 h接毒,采用感染复数(MOI)为0.5的接毒比例,细胞接毒后在微载体上生长96 h可获得最高的PCV2增殖滴度10~(8.5)TCID_(50)/mL,利用该工艺,经过消化转移将PK-15细胞从14 L反应器放大至42 L反应器,微载体上细胞贴附均匀、生长旺盛,42 L反应器中培养72 h细胞密度可达39.0×10~5 cells/mL,病毒滴度10~(8.3)TCID_(50)/mL,应用生物反应器培养PCV2滴度较常规转瓶培养工艺提高了近10倍。进一步表明PCV2悬浮培养放大与接毒工艺稳定,为下一步实现工业级规模化生产奠定基础。  相似文献   

9.
对在生物反应器中用微载体连续灌注培养Marc-145细胞生产猪繁殖与呼吸综合征病毒的制备技术进行了研究.在14 L体积的生物反应器中,加入含10 g/L微载体的细胞培养基DMEM,接种Marc-145细胞至细胞浓度为1×105/mL,培养4d后细胞可生长至5~7×106/mL,然后以感染复数(MOI)为0.01接种PRRSV PC株病毒,接毒后36 h开始收获,连续收获3d左右,收获的病毒滴度范围在106.0~ 1073TCID50/mL之间,将收获的病毒液加入适量的保护剂,经冷冻干燥制备成疫苗,无菌、支原体等项目的检验均合格,3批疫苗的免疫保护率均为5/5.实验表明,用生物反应器微载体灌注培养Marc-145细胞制备PRRS疫苗工艺可行.  相似文献   

10.
介绍了反应器悬浮培养技术在国内外疫苗生产中的研发和应用现状。目前该技术已经在国内口蹄疫疫苗生产中获得成功应用,利用MDCK、Vero等细胞培养生产禽流感疫苗的技术也正在积极研发中。积极推广和应用这一技术将是我国兽用生物制品生产工艺升级换代的必然趋势。  相似文献   

11.
口蹄疫病毒可以在原代细胞和传代细胞上增殖,传统培养采用贴壁培养方式,随着微载体技术、无血清培养基研制和悬浮培养技术的发展,无血清培养法和生物反应器自动化设施提高了口蹄疫病毒含量,降低了生产成本,但直接影响了动物免疫保护效力。随着基因编辑技术的发展,病毒种子毒、细胞株和细胞微环境研究突飞猛进,这为口蹄疫疫苗制备提供了新的技术支撑。论文介绍了口蹄疫病毒在原代细胞、传代细胞的增殖方式和营养特点,以及贴壁培养和悬浮培养的优缺点,为口蹄疫疫苗的研发和生产提供技术参考。  相似文献   

12.
正微载体悬浮培养高致病性猪繁殖与呼吸综合征病毒是提升该疫苗产品质量的重要工艺技术,细胞微载体悬浮培养不仅可以提高单位体积内的细胞量、提高病毒产品效价,同时还具有劳动成本低、产品批间差异小等优点。在提升并保证病毒含量的基础上降低微载体的使用浓度,是生产部门提质降本的方向。我公司利用5L和50L生物反应器微载体悬浮培养Marc145细胞,对接毒时细胞活力、细胞密度的选择、接毒剂量、病毒收获时机等工艺参数优化基础上,进行了微载体使用浓度的比较,确定了适合的微载体使用浓度,达  相似文献   

13.
为了建立水貂源犬瘟热病毒(CDV)的大规模悬浮培养技术,实现细胞高密度生长和病毒高效增殖,本研究应用Cephodex微载体悬浮培养鸡胚成纤维细胞系DF-1细胞,增殖弱毒株CDV3。整个过程采用摇瓶培养法,通过对病毒培养温度、病毒收获时间等关键技术条件进行优化,确立最佳培养条件。结果表明,DF-1细胞37℃培养至72 h,接种CDV3,35℃继续培养72 h收获病毒,病毒滴度每0.1 mL可达105.0 TCID50。CDV微载体悬浮培养技术的初步建立,为高效水貂犬瘟热疫苗的研发生产奠定了重要的基础。  相似文献   

14.
改进病毒规模化生产效率,优化疫苗生产工艺是病毒疫苗研制的关键环节。目前,国内动物细胞制备病毒疫苗的操作方式逐渐从转瓶培养向生物反应器培养转变。生物反应器培养动物细胞的常见方法有悬浮培养、微载体培养、片状载体培养等。生物反应器培养动物细胞有很多优势,可扩大病毒产量,降低成本,易于获取稳定性强、免疫原性高的病毒,有助于机械化控制。生物反应器有潮汐式生物反应器、一次性摇动式生物反应器、一次性填充床生物反应器、微小型生物反应器、新型固定床生物反应器,不同的反应器有不同的特点。对生物反应器培养动物细胞技术在病毒疫苗生产应用领域的研究进行综述,为促进生物反应器的开发与研究提供参考。  相似文献   

15.
猪圆环病毒病是猪的一种非常重要的免疫抑制性疾病,可直接破坏猪的免疫系统,并引起其他疾病的并发或继发感染。针对该病的疫苗主要为全病毒灭活疫苗和基因工程亚单位疫苗,基因工程亚单位疫苗一般利用生物反应器生产,而国内猪圆环全病毒灭活疫苗的微载体悬浮培养生产的工艺目前还处于研究阶段。  相似文献   

16.
为克服犬瘟热疫苗现有生产工艺的缺陷,试验采用10 g/L Cytodex-1型微载体,按每个微载体15~20个细胞的细胞接种量接种至微载体培养Vero细胞,细胞培养液为10%NBS的DMEM培养液。结果显示,当细胞密度达到8×106CFU/mL时接种犬瘟热病毒,最佳培养时间30 h,接毒剂量按照MOI为0.1接种犬瘟热病毒液;当细胞病变达到50%时,病毒感染细胞时间为30 h,收获毒液。按照上述摸索生产工艺参数,收获的犬瘟热病毒液的病毒液滴度每病毒含量≥108.5TCID50/0.1 mL。将收获的病毒液冻存及下游相关的灭活处理,作为制备犬瘟热疫苗的抗原。研究表明,试验大幅度提升犬瘟热病毒培养量,效价批间差异性均一,实现了产业化反应器悬浮培养代替细胞工厂的技术路线。  相似文献   

17.
为了建立高致病性猪繁殖与呼吸综合征病毒(HP-PRRSV)的Marc-145微载体细胞悬浮培养工艺以提高HPPRRSV抗原效价,以BC-7L生物反应器微载体悬浮培养Marc-145细胞,对HP-PRRSV接毒时间、接毒剂量、维持液血清浓度、溶氧量参数、病毒增殖温度等工艺参数进行了摸索和优化。通过细胞悬浮培养逐级放大工艺,在BC-100L生物反应器中培养Marc-145细胞,以优化后HP-PRRSV悬浮培养工艺进行3个批次的病毒悬浮培养。结果在Marc-145细胞微载体悬浮培养的第4天按照感染复数(multiplicity of infection,MOI)为0.1的剂量接毒,接毒后以2%新生牛血清的维持液进行维持培养,溶氧参数设置为40%,最佳培养温度为37℃,最佳收获病毒时间为70~74 h。BC-100L生物反应器中培养的3批病毒增殖曲线与BC-7L培养的病毒增殖曲线相近,在接毒后72 h左右达到病毒效价高峰,病毒含量均不低于108.0TCID50/m L。表明HP-PRRSV悬浮培养工艺稳定,可以实现逐级放大、规模化生产。  相似文献   

18.
应用新型CephodexD微载体悬浮培养ST细胞增殖猪瘟病毒(CSFV),并与常规单层静置培养法进行比较。新型微载体悬浮培养的ST细胞密度72h可达18.9×10~5 cells/mL,是单层静置培养工艺的2倍以上;病毒滴度最高可达7.5×10~5 RID/mL,较单层静置培养法提高了50%;在一个生产流程中,能比传统培养工艺多收获2次合格病毒液。而且,采用新型微载体悬浮培养工艺生产的CSFV,能够刺激猪体产生特异性的中和抗体,对猪的保护率达100%,具有很好的免疫原性。因此,新型微载体悬浮培养工艺较单层静置培养法更有技术优势,在CSFV大规模生产领域具有重要的应用价值。  相似文献   

19.
为实现利用生物反应器制备规模化、自动化生产水貂犬瘟热Vero活疫苗,在7 L生物反应器中悬浮培养Vero细胞,并考察培养基、细胞初始接种密度、培养方式、病毒感染复数和感染时间等参数对细胞增殖、病毒滴度以及细胞代谢的影响。结果显示,在含有5 g/L微载体的DMEM培养基中接种Vero细胞(30~40 cells/球),设定p H、温度、溶氧值和转速分别为7.2、37℃、50%和55 r/min,培养方式为批次培养(0~48 h)+灌流培养(48~96 h)组合方式,培养Vero细胞3~4 d或细胞密度达到200 cells/球以上时,按照MOI=0.0001~0.001吸附接毒,调低温度(33℃)继续培养100~120 h,即可获得高滴度病毒液(10~(6.5)~10~(7.2)TCID_(50)/0.1 m L),经无菌检验合格后,配制水貂犬瘟热Vero细胞活疫苗(CDV3-CL株,悬浮培养),疫苗符合《中国兽药典》三部(2015版)的规定。试验建立了7 L生物反应器悬浮培养Vero细胞制备水貂犬瘟热活疫苗的新工艺,为进一步规模化生产奠定了基础。  相似文献   

20.
PK15细胞是一种被广泛应用于兽用疫苗生产的细胞,然而现今生物制品行业快速发展,传统贴壁培养PK15细胞已经不能满足生产需要.目前通过全悬浮培养技术来培养细胞、病毒已经是发展趋势,但是由于生产用细胞多数为贴壁细胞,难以实现悬浮培养,所以,目前该项技术在疫苗生产上还未广泛应用,技术也还未成熟.故本文探讨PK15细胞在无血...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号