首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
Plants exposed to one stress factor may become more tolerant to another. Cold is the most often documented factor inducing plant resistance to pathogens. The aim of this work was to investigate whether resistance of spring barley and meadow fescue to Bipolaris sorokiniana and resistance of winter oilseed rape to Phoma lingam induced at 5 °C for 2, 4 or 6 weeks are associated with frost tolerance, water potential and soluble carbohydrate content. Cold‐acclimated plants of each species showed increased resistance to the studied pathogens. Barley, fescue and rape plants demonstrated higher frost tolerance after hardening, but only in the case of fescue a correlation between resistance to frost and resistance to B. sorokiniana was found. A significant decrease in the water potential of leaf cells was observed in cold‐acclimated barley and fescue. In these two species, water potential greatly affected resistance to B. sorokiniana. However, only in barley did accumulation of fructose, glucose and sucrose correlate as well with changes in water potential as with cold‐induced resistance to the pathogen. In the case of hardened rape, no correlation between the studied parameters was found. The results obtained indicated that the temperature of 5 °C used during cold acclimation was not favourable for hardening of this plant species.  相似文献   

2.
Winter‐hardiness is a complex trait limiting cultivation of winter barley (Hordeum vulgare ssp. vulgare) with respect to the regions of temperate climate. In the present studies, we verified whether inexpensive and fast physiological markers characterizing photosynthetic acclimation to cold may provide robust characteristics of winter barley genotypes for improved frost resistance. Freezing tolerance of 28 winter barley varieties and advanced breeding lines were tested for three winters in field‐laboratory experiment and under fully controlled conditions. To increase the environmental variability of freezing tolerance, a part of the plants were also de‐acclimated under semi‐controlled conditions and re‐acclimated in laboratory before freezing tests. After controlled cold acclimation, apparent quantum yield of photosystem II (Fv/Fm) as well as photochemical (qP) and non‐photochemical (NPQ) coefficients of chlorophyll fluorescence quenching were studied. Field‐laboratory method assessment of freezing tolerance gives distinct and even opposite results in subsequent years. Also de‐acclimation interacted with growth conditions in the field, giving different rankings of genotypes each year. The results obtained suggest that high level of freezing tolerance measured in laboratory, which is connected with photosynthetic acclimation to cold may be not sufficient for the expression of field resistance, especially when winter conditions are not favourable for cold acclimation.  相似文献   

3.
Frost tolerance is a main component of winter-hardiness and improving it would promote faba bean (Vicia faba L.) cropping in cool-temperate regions. In many species, leaf fatty acid composition was found to be related to frost tolerance. The objective of this study was to determine, in a representative sample of genotypes, the effect of hardening on leaf and stem (1) frost tolerance and (2) fatty acid composition, and to seek correlations between them. First leaf, second leaf and stem of 31 faba bean genotypes were analyzed after hardening and without hardening. High frost tolerance of known winter genotypes and several experimental lines was shown. Hardening had a significant, positive effect on frost tolerance of all three organs. Stems were on average more frost tolerant than leaves. Hardening induced significant changes in the fatty acid composition: oleic acid decreased significantly in leaves by 3.24% and in stems by 1.77%, whereas linolenic acid increased in leaves by 6.28% and in stems by 9.06%. In stems, correlations between frost tolerance and fatty acid composition were not significant. Correlation coefficients strongly indicated that non-hardened oleic acid content, changes in oleic acid and in linoleic plus linolenic acid content in leaves partly explained their frost tolerance; 0.347 (P < 0.1) < |r| < 0.543 (P < 0.01). The results corroborate the importance of using genetic differences in the fatty acid metabolism in breeding grain legumes for frost tolerance.  相似文献   

4.
In previous studies in vitro-selection of proline overaccumulating lines of winter wheat (Triticum sativum L. cv. Jo 3063) with increased frost tolerance was reported. These traits were found to be genetically stable. In the present study the improvement of frost tolerance (winter hardiness) under field conditions is confirmed for F7 progenies of the mutants. Moreover, the mutants accumulated higher levels of glucose and fructose, soluble protein and abscisic acid (ABA) in addition to proline than the wild type under cold hardening conditions in a growth chamber as well as under cold hardening field conditions. ABA and proline levels peaked when the temperature decreased, whereas carbohydrate levels increased more slowly at decreasing temperature. Soluble protein levels also increased during cold hardening, but in addition showed sharp declines during frost periods. Increased carbohydrate levels of the mutants were associated with lower osmotic potential values. The differences in carbohydrate, protein and ABA levels between the mutants and the wild type are probably due to pleiotropic effects of the mutation.  相似文献   

5.
Summary Fifteen spring barley cultivars were evaluated in two years for their tolerance to leaf rust, Puccinia hordei. The consistency between the results obtained in the two experiments was rather poor. The most tolerant cultivars produced low seed yields, the least tolerant ones high seed yields. A strongly negative relationship existed between harves-index and tolerance.  相似文献   

6.
Multivariate analysis of traits determining adaptation in cultivated barley   总被引:6,自引:0,他引:6  
I. Karsai    K. Mészáros    L. Láng    P. M. Hayes  Z. Bedö   《Plant Breeding》2001,120(3):217-222
Thirty‐nine barley varieties of different origin, representing different growth types, were included in a series of experiments aimed at analysing the variability in vernalization response, photoperiod sensitivity and earliness per se and establishing the types of ecoclimatic adaptability using multivariate analysis. In the case of spring barley varieties there was no correlation between any of the three traits. For winter barleys, a negative correlation was found between photoperiod sensitivity and vernalization response and between photoperiod sensitivity and earliness per se. Vernalization response and earliness per se showed a positive correlation. Among the winter barley varieties large variations were apparent in photoperiod sensitivity, vernalization response and earliness per se, which resulted in a tremendous variation in flowering patterns and frost tolerance. Between the spring barley varieties only wider variations in photoperiod sensitivity were detected. Based on the cluster analysis, the 39 varieties could be separated into seven groups. The spring barley varieties were placed in two groups, and the winter barleys in five groups representing different adaptational types. Among these five groups two represented the two opposing extreme combinations of photoperiod sensitivity and vernalization response. The combination of large photoperiod sensitivity and no vernalization response resulted in better frost tolerance than did the combination of photoperiod insensitivity and large vernalization response.  相似文献   

7.
This study describes an investigation to test whether genotypic differences for reproductive frost tolerance in field pea (Pisum sativum L.) can be measured in the field. The method involved individually tagging flowers or young pods at particular stages of development within 48 hr after a frost event and assessing pod survival and seed damage at maturity. Four field pea varieties were grown in 2011 in an experiment which measured the loss of pods following a specific frost event. This experiment also tested the impact of trellis and pathways sown with barley on the efficacy of the frost tolerance data. In 2012, an additional genotype was also tested and, in addition to pod loss, data were collected on seed damage in surviving pods. Results from both years showed significant genotypic differences. There was also a significant positive correlation between mean variety pod loss in 2011 and 2012 indicating reliability of this method across seasons.  相似文献   

8.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

9.
Sixty-four inbred lines of maize ( Zea mays L.) were evaluated for their tolerance to low temperature stress in three experiments at Punjab Agricultural University, Ludhiana. All the 64 inbred lines were evaluated under laboratory conditions. Forty-four of these were also studied under field conditions. In the laboratory test the materials were exposed for four hours to 1, 0, −1, −2, −3 and −3.5°C on six successive nights. Significant genotypic differences were observed for freezing injury in laboratory test and for frost and non-freezing (yellowing) injuries in field evaluation. Expression of frost injury under field condition and freezing injury in laboratory test at −2, −3 and −3.5 °C showed positive correlation in one experiment. The range and mean square for freezing injury of inbred lines were the largest either at −3 or at −3.5°C. The correlation of yellowing with frost injury in field and freezing injury in laboratory at −3 and 3.5°C was not significant suggesting the lack of association between yellowing and frost/freezing injury.  相似文献   

10.
Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this model, four winter wheat cultivars were sown in a field experiment in Uppsala, Sweden in 2013 and 2014. The LT50 was determined by tests of frost tolerance in November, and the cultivars’ LT50c was estimated. Further, recorded winter survival from 20 winter wheat field variety trials in Sweden and Norway was collected from two winter seasons with substantial winter damages. FROSTOL simulations were run for selected cultivars at each location. According to percentage of winter damage, the cultivar survival was classified as “survived,” “intermediate” or “killed.” Mean correspondence between recorded and simulated class of winter survival was 75% and 37% for the locations in Sweden and Norway, respectively. Stress factors that were not accounted for in FROSTOL might explain the poorer accuracy at the Norwegian locations. The accuracy was poorest for cultivars with intermediate LT50c levels. When low temperature was the main cause of damage, as at the Swedish locations, the model accuracy was satisfying.  相似文献   

11.
Summary During the last decades extensive progress has been achieved in winter barley breeding with respect to both, yield and resistance to fungal and viral diseases. This progress is mainly due to the efficient use of the genetic diversity present within high yielding adapted cultivars and – with respect to resistance – to the extensive evaluation of genetic resources followed by genetic analyses and introgression of respective genes by sexual recombination. Detailed knowledge on genetic diversity present on the molecular level regarding specific traits as well as on the whole genome level may enhance barley breeding today by facilitating efficient selection of parental lines and marker assisted selection procedures. In the present paper the state of the art with respect to virus diseases, i.e. Barley mild mosaic virus, Barley yellow mosaic virus, and Barley yellow dwarf virus is briefly reviewed and first results on a project aiming on a genome wide estimation of genetic diversity which in combination with data on yield and additional agronomic traits may facilitate the detection of marker trait associations and a more efficient selection of parental genotypes are presented. By field tests of 49 two-rowed and 64 six-rowed winter barley cultivars the genetic gain in yield for the period 1970–2003 was estimated at 54.6 kg ha−1 year−1 (r2 = 0.567) for the six-rowed cultivars and at 37.5 kg ha−1 year−1 (r2 = 0.621) for the two-rowed cultivars. Analysis of 30 SSRs revealed a non-homogenous allele distribution between two and six-rowed cultivars and changes of allele frequencies in relation to the time of release. By PCoA a separation between two and six-rowed cultivars was observed but no clear cut differentiation in relation to the time of release. In the two-rowed cultivars an increase in genetic diversity (DI) from older to newly released cultivars was detected.  相似文献   

12.
Brian P. Forster 《Euphytica》2001,120(3):317-328
A review of research at the Scottish Crop Research Institute (SCRI) on the effects of semi-dwarfing genes on salt tolerance in barley is given. Work began in1993 with the fortuitous and unexpected result that the cultivar ‘Golden Promise’ showed considerable tolerance to salt. Golden Promise is a gamma-ray induced semi-dwarf mutant of the cultivar ‘Maythorpe’. The parent and mutant cultivars are presumed to be isogenic, but show significant differences in their responses to salt stress. The positive and pleiotropic effects of the mutant gene, commonly known as GPert were found to be effective in a number of genetic backgrounds. Earlier, in 1991 Frackowiak showed that the GPert mutation was allelic to the ari-e mutants in barley. The ari-emutants were salt tested and found to show the same positive responses to salt stress as Golden Promise. This supported the allelism tests, and consequently the GPert symbol was changed to ari-e.GP. The semi-dwarf mutant sdw1 (also known as denso) and the erectoides semi-dwarf mutant,ert-k 32 were also tested for their effects on tolerance to salt, but did not show any positive effects. Salt tolerance was therefore not a general phenomenon of semi-dwarf stature but specific to mutations at the Ari-e locus in these lines. Genetic markers (RAPDs, AFLPs and SSRs) have been used for fingerprinting, genetic mapping, and QTL analysis. The markers have helped 1) confirm the isogenic relationship between Maythorpe and Golden Promise, 2)clarify the confusion over the pedigree of Golden Promise, and 3) genetically map the ari-e.GPlocus and examine its pleiotropic effects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
F. Rizza    D. Pagani    A. M. Stanca  L. Cattivelli 《Plant Breeding》2001,120(5):389-396
The efficiency of the excitation capture by open Photosystem II (PSII) reaction centres was measured by the Fv/Fm ratios in a collection of winter and spring oats in order to assess the effects of hardening and freezing on the functionality of PSII and also the suitability of a chlorophyll fluorescence‐based method to screen oat cultivars for frost tolerance. A significant reversible decrease in Fv/Fm was found in all genotypes during acclimation to low, non‐freezing temperatures. Fv/Fm analysis appears to be an attractive test for the evaluation of frost tolerance in oats, being rapid, non‐invasive and capable of monitoring a trait related to a crucial stage in the acquisition of frost tolerance. It is more sensitive and precise than other standard methods and highly correlated with field‐evaluated frost damage. The measurements made during recovery 1 or 2 days after stress when the visual symptoms are not yet expressed, were especially advantageous because of the large variability in genotype response. The r‐values (close to 0.8) were reduced due to the non‐standard behaviour of the winter cultivar ‘Aintree’. The cold acclimation response of this genotype has been analysed in detail and the limits of artificial freezing tests are discussed.  相似文献   

14.
Variation for resistance to Fusarium head blight in spring barley   总被引:3,自引:0,他引:3  
Fusarium head blight (FHB) is a fungal disease of barley and other cereals, causing substantial yield and quality losses, mainly due to the contamination of the harvest with mycotoxins. We aimed to evaluate genetic variation for resistance to FHB and its association with other plant characters in diverse barley germplasm in order to identify useful lines for resistance breeding. The 143 barley lines consisted of 88 current European spring barley lines and cultivars, 33 accessions from the genebank at IPK Gatersleben, and 22 lines obtained from North American institutions. We conducted artificially inoculated field experiments with Fusarium graminearum Schwabe during two seasons. FHB severity was evaluated by repeated assessment of visual symptoms. On a set of 49 lines several trichothecene mycotoxins were analyzed. Variation for FHB severity was quantitative. The lines with lowest FHB severity were 'CIho 4196' and 'PI 566203'. Also within the European spring barley collection variation for FHB severity was highly significant. There was a significant negative correlation between plant height and FHB severity (r=– 0.55). FHB severity assessed in the field and the amount of deoxynivalenol in the harvested grains were positively correlated (r= 0.87). Several lines with a useful level of FHB resistance were found or confirmed and are recommended as crossing partners.  相似文献   

15.
Embryogenic calli derived from anther cultures of the two-rowed winter barley cultivar Igri were plated on solid L3 medium containing the proline analogue hydroxyproline (Hyp), 10–20 mmol l–1. Exposure to Hyp caused severe degeneration of most of the calli. Hyp resistant calli, distinguishable by their lighter colour and higher growth rate, and control calli not exposed to Hyp were plated on L3 regeneration medium. From 22,500 anthers exposed to Hyp 46 Hyp resistant regenerates were obtained, which were transferred to soil. After cultivation for 5–10 weeks at normal growth conditions they were cold hardened at 2 C under short day conditions together with control regenerates. Frost tolerance assays with segments of fully grown leaves of unhardened and cold hardened plants revealed that Hyp resistant regenerants were significantly more frost tolerant than the control regenerants. Improved frost tolerance was found also in the progenies R1 to R9, and genotypic segregation in the R1 generation in a 1:2:1 ratio was indicated. Increased proline content was observed in the R2 generation and in subsequent generations and was significantly (P 0.001) correlated with increased frost tolerance in the Hyp lines. Comparative studies of R9 progenies from homozygous R2 plants with the wild type Igri under field conditions in winter at three locations in Europe as well as crossing experiments confirmed the heritable improvement of frost tolerance and winter survival, respectively, in the Hyp lines. The results support the hypothesis that proline accumulation in cold acclimated winter barley plants is causally related to the acquisition of frost tolerance. Moreover, the described biotechnological procedure may be applicable in breeding programs for improved winter hardiness and possibly also for other stress tolerances.  相似文献   

16.
Accurate assessments of genetic gains ensuing from plant breeding for the most important agronomic characteristics in Nordic spring barley (Hordeum vulgareL.) are not available. Hence this research was aimed to determine the rate of genetic improvement in the Nordic barley breeding pool. This study included 90, 2-row spring barley cultivars released (1942–1988) and29, 6-row spring barley cultivars released(1930–1991) adopted by Nordic farmers that were tested in four Nordic locations for three consecutive years. Relative genetic gain owing to plant breeding was 13% in2-row barley and 34% in 6-row barley for grain yield. The absolute gain for this characteristic was 13 ± 3 kg ha-1 year -1 in 2-row barley, and22 ± 3 kg ha-1 year-1 in6-row barley. Improved yield was achieved in Nordic barley by reducing plant height(0.20 ± 0.04 cm year-1 for 2-rowbarley and 0.16 ± 0.06 cm year-1for 6-row cultivars), thereby reducing significantly lodging (0.5 ± 0.1%year-1 and 0.4 ± 0.1year-1), and increasing significantly the harvest index (0.0008 ± 0.0002year-1 and 0.0018 ± 0.0002year-1). Additionally, in 2-row spring barley cultivars resistance to powdery mildew (0.19 ± 0.08% year-1)and thousand-kernel weight (0.07 ±0.03 g year-1) were also significantly enhanced, whereas hectoliter weight was improved (0.06 ± 0.02 kg year-1)in 6-row barley cultivars in the period investigated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Sutka  J. 《Euphytica》1994,77(3):277-282
Summary The frost tolerance of winter wheat is one component of winter hardiness. If seedlings are frost resistant, it means that they can survive the frost effect without any considerable damage. To study the genetic control of frost tolerance, an artificial freezing test was used. Frost tolerance is controlled by an additive-dominance system. The results of diallel analyses indicate the importance of both additive and non-additive gene action in the inheritance of this character. The dominant genes act in the direction of lower frost tolerance and the recessive genes in the direction of a higher level of frost tolerance. The results of monosomic and substitution analyses show that at least 10 of the 21 pairs of chromosomes are involved in the control of frost tolerance and winter hardiness. Chromosomes 5A and 5D have been implicated most frequently. The geneFr1 (Frost 1) was located on the long arm of chromosome 5A. Crosses between cultivars, chromosome manipulation and the induction of somaclonal variation may be suitable methods for broadening the gene pool for frost tolerance.  相似文献   

18.
M. I. E. Arabi 《Euphytica》2005,145(1-2):161-170
Barley breeders in Syria attempting to develop barley (Hordeum vulgare L.) cultivars resistant to barley leaf stripe (BLS) disease caused by Pyrenophora graminea Ito & Kuribayashi [anamorph Drechslera graminea (Rabenh. Ex. Schlech. Shoem.)]. Information on the combining ability for BLS resistance in Syria is not available. This study was conducted to evaluate, in 10 genetically diverse barley parents, general combining ability (GCA) and specific combining ability (SCA) effects towards the determination of the genetic basis of disease resistance and to estimate genetic variability for yield components and its modification by BLS. Ten parental genotypes varying in their reactions to BLS were crossed in a half-diallel mating design to generate 45 full-sib families. The families and the parents were inoculated with P. graminea and evaluated for resistance in replicated field tests (three inoculated and three non-inoculated plots). The parents chosen showed wide variations for resistance to BLS. Genetic component analysis showed significant effects for both GCA and SCA for resistance to BLS, suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. GCA effects were more important than SCA effects. Resistant parents exhibited high negative GCA indicating that additive gene effects were more predominant, and suggesting their prime suitability for use in barley breeding programs to improve resistance to BLS. Narrow-sense heritability was 58% and broad-sense heritability was 99% indicating that selection for BLS resistance should be effective in these crosses. A high genetic variability for the agronomic traits studied was observed. Yield components decreased significantly in inoculated plants and more pronounced in diseased plants. Significant GCA was observed for all traits. Values for GCA were, in some cases, significantly modified by BLS. This indicates that attention must be paid to the danger of drawing conclusion in quantitative genetics studies dealing with both diseased and healthy plants. Two genotypes, Banteng and Igri, had high negative GCA effects and are promising parents for enhancement of BLS resistance.  相似文献   

19.
Sixty Nicotiana species were examined for tolerance against various osmotica for seed germination and seedling growth in vitro. The species showed a wide variety of tolerance, and based on the results of the in vitro tests, 31 species were selected and further evaluated for salt and drought tolerance in a glasshouse. The degrees of tolerance of germination among the 57 species toward NaCl were approximately related to those toward mannitol, indicating that the osmolarity plays a majorrole in seed germination. However, the responses during the seedling growth differed in NaCl and mannitol or drought, and there was no correlation between salt and drought tolerance. Based on the responses in vitro and in the glasshouse, N. paniculata and N. excelsior were selected as the salt tolerant species, and N. arentsii as the salt sensitive species. The degrees of accumulation of dry matter and of Na+ in the leaves were different in the two tolerant species; during NaCl treatment, N. paniculata and N. arentsii accumulated less dry matter relative to the control plants than N. excelsior, and N. paniculata accumulated more Na+ in its leaves than N. excelsior and N. arentsii. It is assumed that the two salt tolerant species have different mechanisms for tolerance to the salt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Using some of the chromosome substitution lines developed from thecrosses of the donor Cheyenne to Chinese Spring we showed that theaccumulation of water soluble carbohydrates during different stages ofhardening was time dependent. Moreover there was a significantcorrelation between the rate of carbohydrate accumulation and the frosttolerance. The expression and regulation of a wheat gene homologous tothe barley cold regulated cor14b gene was compared in frost sensitiveand frost tolerant wheat genotypes at different temperatures. Studies madewith chromosome substitution lines showed that the threshold inductiontemperature polymorphism of the cor14b wheat homologous genewas controlled by loci located on chromosome 5A of wheat, while cor14b gene was mapped, in Triticum monococcum, onto the longarm of chromosome 2Am. Our study on the effect of cold hardeningon glutathione (GSH) metabolism showed that chromosome 5A of wheathas an influence on the GSH accumulation and on the ratio of reduced andoxidised glutathione as part of a complex regulatory function during coldhardening. In addition, the level of increase in GSH content duringhardening may indicate the degree of the frost tolerance of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号